SENet 学习
ILSVRC
是一个比赛,全称是ImageNet Large-Scale Visual Recognition Challenge,平常说的ImageNet比赛指的是这个比赛。
使用的数据集是ImageNet数据集的一个子集,一般说的ImageNet(数据集)实际上指的是ImageNet的这个子集,总共有1000类,每类大约有1000张图像。完整的 ImageNet,有大约1.2million的训练集,5万验证集,15万测试集。ILSVRC从2010年开始举办,到2017年是最后一届。ILSVRC-2012的数据集被用在2012-2014年的挑战赛中(VGG论文中提到)。ILSVRC-2010是唯一提供了test set的一年。
ImageNet可能是指整个数据集(15 million),也可能指比赛用的那个子集(1000类,大约每类1000张),也可能指ILSVRC这个比赛。需要根据语境自行判断。
12-17年期间在ImageNet比赛上提出了一些经典网络,比如AlexNet,ZFNet,VGG, GoogLeNet, ResNet,DenseNet,SENet。我之前的博文都有相应模型及其变体的介绍。

- 13 年 ZFNet
- 16 年 DenseNet
SENET简介
提出背景:卷积核通常被看做是在局部感受野上,在空间上和通道维度上同时对信息进行相乘求和的计算。现有网络很多都是主要在空间维度方面来进行特征的融合(如Inception的多尺度)。
通道维度的注意力机制:在常规的卷积操作中,输入信息的每个通道进行计算后的结果会进行求和输出,这时每个通道的重要程度是相同的。而通道维度的注意力机制,则通过学习的方式来自动获取到每个特征通道的重要程度(即feature map层的权重),以增强有用的通
道特征,抑制不重要的通道特征。
说起卷积对通道信息的处理,有人或许会想到逐点卷积,即kernel大小为1X1的常规卷积。与1X1卷积相比,SENet是为每个channel重新分配一个权重(即重要程度)。而1X1卷积只是在做channel的融合计算,顺带进行升维和降维,也就是说每个channel在计算时的重要程度是相同的。
SENet 模块

X经过一系列传统卷积得到U,对U先做一个Global Average Pooling,输出的1x1xC数据(即,上图梯形短边的白色向量),这个特征向量一定程度上可以代表之前的输入信息,论文中称之为Squeeze操作。
再经过两个全连接来学习通道间的重要性,用sigmoid限制到[0,1]的范围,这时得到的输出可以看作每个通道重要程度的权重(即上图梯形短边的彩色向量),论文中称之为Excitation操作。
最后,把这个1x1xC的权重乘到U的C个通道上,这时就根据权重对U的channles进行了重要程度的重新分配。
效果
- 与SE模块可以嵌入到现在几乎所有的网络结构中,而且都可以得到不错的效果提升,用过的都说好。
- 在大部分模型中嵌入SENet要比非SENet的准确率更高出1%左右,而计算复杂度上只是略微有提升,具体如下图所示。而且SE块会使训练和收敛更容易。CPU推断时间的基准测试:224×224的输入图 像,ResNet-50 164ms, SE-ResNet-50 167ms。

代码
class SqueezeExcite(nn.Module):def __init__(self,input_c: int, # block input channelexpand_c: int, # block expand channelse_ratio: float = 0.25):super(SqueezeExcite, self).__init__()squeeze_c = int(input_c * se_ratio)self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)self.act1 = nn.SiLU() # alias Swishself.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)self.act2 = nn.Sigmoid()def forward(self, x: Tensor):scale = x.mean((2, 3), keepdim=True)scale = self.conv_reduce(scale)scale = self.act1(scale)scale = self.conv_expand(scale)scale = self.act2(scale)return scale * x
总结
- SE block 可以理解为 channel维度上的注意力机制(即重分配通道上 feature map对后续计算的权重),与Stochastic Depth Net一样,本论文的贡献更像一种思想,而非模型。在之后的模型中,会经常看见SE block 的身影。例如,SKNet,MobileNet等等。
相关文章:
SENet 学习
ILSVRC 是一个比赛,全称是ImageNet Large-Scale Visual Recognition Challenge,平常说的ImageNet比赛指的是这个比赛。 使用的数据集是ImageNet数据集的一个子集,一般说的ImageNet(数据集)实际上指的是ImageNet的这个子…...
目前和未来的缓存构建
说起来可能有点反直觉,有时候不运行反而可以帮助我们加快速度,这正是网络浏览器运行的指导原则。不必在页面上加载所有内容,缓存的元素已经存在,不需要每次访问网站或网页时都重新加载。页面加载速度越快,浏览器的工作…...
aws亚马逊云免费账号代充值!!!什么是 AWS Lambda?
AWS Lambda 是一项计算服务,可使您无需预配置或管理服务器即可运行代码。 Lambda 在可用性高的计算基础设施上运行您的代码,执行计算资源的所有管理工作,其中包括服务器和操作系统维护、容量调配和弹性伸缩和记录。使用 Lambda,您…...
《从零开始大模型开发与微调 :基于PyTorch与ChatGLM》简介
内 容 简 介 大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,…...
【LeetCode】102. 二叉树的层序遍历
题目链接 文章目录 Python3方法一: 广度优先搜索 (BFS) ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法二: 深度优先搜索 (DFS) ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯ C方法一: 广度优先搜索 (BFS) ⟮ O ( n ) ⟯ \lgroup O(n…...
golang连接池检查连接失败时如何重试
在Go中,可以通过使用database/sql包的DB类型的Ping方法来检查数据库连接的可用性。如果连接检查失败,可以选择进行重试。以下是一个简单的示例代码,演示了如何在连接检查失败时进行重试: import ("database/sql""…...
从JavaScript到Rust的三年时间小结
Rust 是一种注重安全性、速度和并发性的系统编程语言。它能编译成高效的本地代码,无需垃圾回收即可访问内存等底层资源,同时还能防止分隔故障。 作者讨论了他们几年来用 Rust 构建大型应用程序和库的经验。他们发现 Rust 的借用检查器和类型系统有助于减…...
【Python机器学习】零基础掌握VotingRegressor集成学习
如何更准确地预测房价? 想象一下,你是一名房地产分析师,你的任务是预测一个小区的未来房价。这看似简单,但实际上,房价受到多种因素的影响,如地理位置、房屋面积、周围设施等。你可能会使用线性回归模型来进行预测,但是你会发现,尽管模型的准确性还可以,但还是存在一…...
云计算模式的区域LIS系统源码,基于ASP.NET+JQuery、EasyUI+MVC技术架构开发
云计算模式的区域LIS系统源码 云LIS系统源码,自主版权 LIS系统是专为医院检验科的仪器设备能与计算机连接。可通过LIS系统向仪器发送指令,让仪器自动操作和接收仪器数据。并快速的将检验仪器中的数据导入到医生工作站中进行管理,且可将检验结…...
面向对象设计原则之接口隔离原则
目录 定义接口隔离原则与单一职责原则示例 定义 接口隔离原则,全称为 Interface Segregation Principle,缩写ISP。 原始定义:Clients should not be forced to depend upon interfaces that they don’t use。 翻译: 不应该强行…...
haproxy 负载均衡
haproxy负载均衡 haproxy:基于C语言开发的开源软件 支持高性能的tcp和http负载均衡器,工作中用的版本1.5.9 haproxy功能:主要用于高并发的web站点,工作原理和nginx、lvs都一样 haproxy缺点: 单节点部署,单实例运行。代…...
在el-dialog中使用tinymce 点击工具栏下拉框被遮挡
在el-dialog中使用tinymce控件时,会出现点击工具栏下拉框出现在弹窗下一层,审查元素之后发现是tinymce的下拉框z-index优先级低于el-dialog的z-index导致的,所以需要增加tinymce的下拉框的z-index值。 通过审查元素得到,需要修改t…...
CloudQuery + StarRocks:打造高效、安全的数据库管控新模式
随着技术的迅速发展,各种多元化的数据库产品应运而生,它们不仅类型众多,而且形式各异,国产化数据库千余套,开源数据库百余套 OceanBase 、PolarDB 、StarRocks…还有一些像 Oracle、MySQL 这些传统数据库。这些数据库产…...
各类统计模型R语言的详细使用教程-R语言的线性回归使用教程
各类统计模型R语言的详细使用教程-R语言的线性回归使用教程 前言R语言的线性回归代码示例回归诊断误差项正态qq图内学生化残差外学生化残差线性关系异常值的发现、处理帽子矩阵的方法DFFITS 准则Cook统计量COVRATIO准则多重共线性summaryKlein判别法特征根法条件指数法方差膨胀…...
点云从入门到精通技术详解100篇-基于尺度统一的三维激光点云与高清影像配准
目录 前言 研究现状 三维激光点云与影像配准研究现状 点云配准研究现状...
<蓝桥杯软件赛>零基础备赛20周--第2周
报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 每周发1个博客,共20周(读者可以按…...
CMake多文件构建初步
前面学习了cmake,不熟悉,只是记录了操作过程;下面再继续; 略有一点进步,增加一个代码文件,之前是1个代码文件; 如下图,prj是空文件夹, CMakeLists.txt如下;…...
游戏研发的解决方案有哪些?
游戏研发的解决方案可以根据不同的需求和情境而有所不同,以下是一些常见的游戏研发解决方案: 游戏引擎: 游戏引擎是游戏研发的基础,它提供了开发游戏所需的核心功能,如图形渲染、物理引擎、音效管理、动画等。一些流行…...
Bayes决策:身高与体重特征进行性别分类
代码与文件请从这里下载:Auorui/Pattern-recognition-programming: 模式识别编程 (github.com) 简述 分别依照身高、体重数据作为特征,在正态分布假设下利用最大似然法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决…...
【考研数学】数学“背诵”手册 | 需要记忆且容易遗忘的知识点
文章目录 引言一、高数常见泰勒展开 n n n 阶导数公式多元微分函数连续、可微、连续可偏导之间的关系多元函数极值无条件极值条件极值 三角函数的积分性质华里士公式( “点火”公式 )特殊性质 原函数与被积函数的奇偶性结论球坐标变换公式 二、写在最后 …...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...
Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用
Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用 Linux 内核内存管理是构成整个内核性能和系统稳定性的基础,但这一子系统结构复杂,常常有设置失败、性能展示不良、OOM 杀进程等问题。要分析这些问题,需要一套工具化、…...
02-性能方案设计
需求分析与测试设计 根据具体的性能测试需求,确定测试类型,以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通,初步确定压测方案及具体的性能指标QA完成性能测试设计后,需产出测试方案文档发送邮件到项目组&…...
