机器学习-学习率:从理论到实战,探索学习率的调整策略
目录
- 一、引言
- 二、学习率基础
- 定义与解释
- 学习率与梯度下降
- 学习率对模型性能的影响
- 三、学习率调整策略
- 常量学习率
- 时间衰减
- 自适应学习率
- AdaGrad
- RMSprop
- Adam
- 四、学习率的代码实战
- 环境设置
- 数据和模型
- 常量学习率
- 时间衰减
- Adam优化器
- 五、学习率的最佳实践
- 学习率范围测试
- 循环学习率(Cyclical Learning Rates)
- 学习率热重启(Learning Rate Warm Restart)
- 梯度裁剪与学习率
- 使用预训练模型和微调学习率
- 六、总结
本文全面深入地探讨了机器学习和深度学习中的学习率概念,以及其在模型训练和优化中的关键作用。文章从学习率的基础理论出发,详细介绍了多种高级调整策略,并通过Python和PyTorch代码示例提供了实战经验。
关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。
一、引言
学习率(Learning Rate)是机器学习和深度学习中一个至关重要的概念,它直接影响模型训练的效率和最终性能。简而言之,学习率控制着模型参数在训练过程中的更新幅度。一个合适的学习率能够在确保模型收敛的同时,提高训练效率。然而,学习率的选择并非易事;过高或过低的学习率都可能导致模型性能下降或者训练不稳定。
在传统的机器学习算法中,例如支持向量机(SVM)和随机森林(Random Forest),参数优化通常是通过解析方法或者贪心算法来完成的,因此学习率的概念相对较少涉及。但在涉及优化问题和梯度下降(Gradient Descent)的方法中,例如神经网络,学习率成了一个核心的调节因子。
学习率的选择对于模型性能有着显著影响。在实践中,不同类型的问题和数据集可能需要不同的学习率或者学习率调整策略。因此,了解如何合适地设置和调整学习率,是每一个机器学习从业者和研究者都需要掌握的基础知识。
这个领域的研究已经从简单的固定学习率扩展到了更为复杂和高级的自适应学习率算法,如 AdaGrad、RMSprop 和 Adam 等。这些算法试图在训练过程中动态地调整学习率,以适应模型和数据的特性,从而达到更好的优化效果。
综上所述,学习率不仅是一个基础概念,更是一个充满挑战和机会的研究方向,具有广泛的应用前景和深远的影响。在接下来的内容中,我们将深入探讨这一主题,从基础理论到高级算法,再到实际应用和最新研究进展。
二、学习率基础
学习率(Learning Rate)在优化算法,尤其是梯度下降和其变体中,扮演着至关重要的角色。它影响着模型训练的速度和稳定性,并且是实现模型优化的关键参数之一。本章将从定义与解释、学习率与梯度下降、以及学习率对模型性能的影响等几个方面,详细地介绍学习率的基础知识。
定义与解释
学习率通常用符号 (\alpha) 表示,并且是一个正实数。它用于控制优化算法在更新模型参数时的步长。具体地,给定一个损失函数 ( J(\theta) ),其中 ( \theta ) 是模型的参数集合,梯度下降算法通过以下公式来更新这些参数:
学习率与梯度下降
学习率在不同类型的梯度下降算法中有不同的应用和解释。最常见的三种梯度下降算法是:
- 批量梯度下降(Batch Gradient Descent)
- 随机梯度下降(Stochastic Gradient Descent, SGD)
- 小批量梯度下降(Mini-batch Gradient Descent)
在批量梯度下降中,学习率应用于整个数据集,用于计算损失函数的平均梯度。而在随机梯度下降和小批量梯度下降中,学习率应用于单个或一小批样本,用于更新模型参数。
随机梯度下降和小批量梯度下降由于其高度随机的性质,常常需要一个逐渐衰减的学习率,以帮助模型收敛。
学习率对模型性能的影响
选择合适的学习率是非常重要的,因为它会直接影响模型的训练速度和最终性能。具体来说:
- 过大的学习率:可能导致模型在最优解附近震荡,或者在极端情况下导致模型发散。
- 过小的学习率:虽然能够保证模型最终收敛,但是会大大降低模型训练的速度。有时,它甚至可能导致模型陷入局部最优解。
实验表明,不同的模型结构和不同的数据集通常需要不同的学习率设置。因此,实践中常常需要多次尝试和调整,或者使用自适应学习率算法。
综上,学习率是机器学习中一个基础但复杂的概念。它不仅影响模型训练的速度,还会影响模型的最终性能。因此,理解学习率的基础知识和它在不同情境下的应用,对于机器学习的实践和研究都是非常重要的。
三、学习率调整策略
学习率的调整策略是优化算法中一个重要的研究领域。合适的调整策略不仅能够加速模型的收敛速度,还能提高模型的泛化性能。在深度学习中,由于模型通常包含大量的参数和复杂的结构,选择和调整学习率变得尤为关键。本章将详细介绍几种常用的学习率调整策略,从传统方法到现代自适应方法。
常量学习率
最简单的学习率调整策略就是使用一个固定的学习率。这是最早期梯度下降算法中常用的方法。虽然实现简单,但常量学习率往往不能适应训练动态,可能导致模型过早地陷入局部最优或者在全局最优点附近震荡。
时间衰减
时间衰减策略是一种非常直观的调整方法。在这种策略中,学习率随着训练迭代次数的增加而逐渐减小。公式表示为:
自适应学习率
自适应学习率算法试图根据模型的训练状态动态调整学习率。以下是一些广泛应用的自适应学习率算法:
AdaGrad
RMSprop
Adam
综上,学习率调整策略不仅影响模型训练的速度,还决定了模型的收敛性和泛化能力。选择合适的学习率调整策略是优化算法成功应用的关键之一。
四、学习率的代码实战
在实际应用中,理论知识是不够的,还需要具体的代码实现来实验和验证各种学习率调整策略的效果。本节将使用Python和PyTorch来展示如何实现前文提到的几种学习率调整策略,并在一个简单的模型上进行测试。
环境设置
首先,确保你已经安装了PyTorch。如果没有,可以使用以下命令进行安装:
pip install torch
数据和模型
为了方便演示,我们使用一个简单的线性回归模型和生成的模拟数据。
import torch
import torch.nn as nn
import torch.optim as optim# 生成模拟数据
x = torch.rand(100, 1) * 10 # shape=(100, 1)
y = 2 * x + 3 + torch.randn(100, 1) # y = 2x + 3 + noise# 线性回归模型
class LinearRegression(nn.Module):def __init__(self):super(LinearRegression, self).__init__()self.linear = nn.Linear(1, 1)def forward(self, x):return self.linear(x)model = LinearRegression()
常量学习率
使用固定的学习率进行优化。
# 使用SGD优化器和常数学习率
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
for epoch in range(100):outputs = model(x)loss = nn.MSELoss()(outputs, y)optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}')
在这里,我们使用了常量学习率0.01,并没有进行任何调整。
时间衰减
应用时间衰减调整学习率。
# 初始化参数
lr = 0.1
gamma = 0.1
decay_rate = 0.95# 使用SGD优化器
optimizer = optim.SGD(model.parameters(), lr=lr)# 训练模型
for epoch in range(100):outputs = model(x)loss = nn.MSELoss()(outputs, y)optimizer.zero_grad()loss.backward()optimizer.step()# 更新学习率lr = lr * decay_ratefor param_group in optimizer.param_groups:param_group['lr'] = lrprint(f'Epoch {epoch+1}, Learning Rate: {lr}, Loss: {loss.item()}')
这里我们使用了一个简单的时间衰减策略,每个epoch后将学习率乘以0.95。
Adam优化器
使用自适应学习率的Adam优化器。
# 使用Adam优化器
optimizer = optim.Adam(model.parameters(), lr=0.01)# 训练模型
for epoch in range(100):outputs = model(x)loss = nn.MSELoss()(outputs, y)optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}')
Adam优化器会自动调整学习率,因此我们不需要手动进行调整。
在这几个例子中,你可以明显看到学习率调整策略如何影响模型的训练过程。选择适当的学习率和调整策略是实现高效训练的关键。这些代码示例提供了一个出发点,但在实际应用中,通常需要根据具体问题进行更多的调整和优化。
五、学习率的最佳实践
在深度学习中,选择合适的学习率和调整策略对模型性能有着巨大的影响。本节将探讨一些学习率的最佳实践,每个主题后都会提供具体的例子来增加理解。
学习率范围测试
定义: 学习率范围测试是一种经验性方法,用于找出模型训练中较优的学习率范围。
例子: 你可以从一个非常小的学习率(如0.0001)开始,每个mini-batch或epoch后逐渐增加,观察模型的损失函数如何变化。当损失函数开始不再下降或开始上升时,就可以找出一个合适的学习率范围。
循环学习率(Cyclical Learning Rates)
定义: 循环学习率是一种策略,其中学习率会在一个预定义的范围内周期性地变化。
例子: 你可以设置学习率在0.001和0.1之间循环,周期为10个epochs。这种方法有时能更快地收敛,尤其是当你不确定具体哪个学习率值是最佳选择时。
学习率热重启(Learning Rate Warm Restart)
定义: 在每次达到预设的训练周期后,将学习率重置为较高的值,以重新“激活”模型的训练。
例子: 假设你设置了一个周期为20个epochs的学习率衰减策略,每次衰减到较低的值后,你可以在第21个epoch将学习率重置为一个较高的值(如初始值的0.8倍)。
梯度裁剪与学习率
定义: 梯度裁剪是在优化过程中限制梯度的大小,以防止因学习率过大而导致的梯度爆炸。
例子: 在某些NLP模型或RNN模型中,由于梯度可能会变得非常大,因此采用梯度裁剪和较小的学习率通常更为稳妥。
使用预训练模型和微调学习率
定义: 当使用预训练模型(如VGG、ResNet等)时,微调学习率是非常关键的。通常,预训练模型的顶层(或自定义层)会使用更高的学习率,而底层会使用较低的学习率。
例子: 如果你在一个图像分类任务中使用预训练的ResNet模型,可以为新添加的全连接层设置较高的学习率(如0.001),而对于预训练模型的其他层则可以设置较低的学习率(如0.0001)。
总体而言,学习率的选择和调整需要根据具体的应用场景和模型需求来进行。这些最佳实践提供了一些通用的指导方针,但最重要的还是通过不断的实验和调整来找到最适合你模型和数据的策略。
六、总结
学习率不仅是机器学习和深度学习中的一个基础概念,而且是模型优化过程中至关重要的因素。尽管其背后的数学原理相对直观,但如何在实践中有效地应用和调整学习率却是一个充满挑战的问题。本文从学习率的基础知识出发,深入探讨了各种调整策略,并通过代码实战和最佳实践为读者提供了全面的指导。
-
**自适应优化与全局最优:**虽然像Adam这样的自适应学习率方法在很多情况下表现出色,但它们不一定总是能找到全局最优解。在某些需要精确优化的应用中(如生成模型),更加保守的手动调整学习率或者更复杂的调度策略可能会更有效。
-
**复杂性与鲁棒性的权衡:**更复杂的学习率调整策略(如循环学习率、学习率热重启)虽然能带来更快的收敛,但同时也增加了模型过拟合的风险。因此,在使用这些高级策略时,配合其他正则化技术(如Dropout、权重衰减)是非常重要的。
-
**数据依赖性:**学习率的最佳设定和调整策略高度依赖于具体的数据分布。例如,在处理不平衡数据集时,较低的学习率可能更有助于模型学习到少数类的特征。
-
**模型复杂性与学习率:**对于更复杂的模型(如深层网络或者Transformer结构),通常需要更精细的学习率调控。这不仅因为复杂模型有更多的参数,还因为它们的优化面通常更为复杂和崎岖。
通过深入地理解学习率和其在不同场景下的应用,我们不仅可以更高效地训练模型,还能在模型优化的过程中获得更多关于数据和模型结构的洞见。总之,掌握学习率的各个方面是任何希望在机器学习领域取得成功的研究者或工程师必须面对的挑战之一。
关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。
相关文章:

机器学习-学习率:从理论到实战,探索学习率的调整策略
目录 一、引言二、学习率基础定义与解释学习率与梯度下降学习率对模型性能的影响 三、学习率调整策略常量学习率时间衰减自适应学习率AdaGradRMSpropAdam 四、学习率的代码实战环境设置数据和模型常量学习率时间衰减Adam优化器 五、学习率的最佳实践学习率范围测试循环学习率&a…...

【Vue3-Flask-BS架构Web应用】实践笔记1-使用一个bat脚本自动化完整部署环境
前言 近年来,Web开发已经成为计算机科学领域中最热门和多产的领域之一。Python和Vue.js是两个备受欢迎的工具,用于构建现代Web应用程序。在本教程中,我们将探索如何使用这两个工具来创建一个完整的Web项目。我们将完成从安装Python和Vue.js到…...

工作小计-GPU硬编以及依赖库 nvcuvidnvidia-encode
工作小计-GPU编码以及依赖库 已经是第三篇关于编解码的记录了。项目中用到GPU编码很久了,因为yuv太大,所以编码显得很重要。这次遇到的问题是环境的搭建问题。需要把开发机上的环境放到docker中,以保证docker中同样可以进行GPU的编码。 1 定…...

前端 JS 经典:宏任务、微任务、事件循环(EventLoop)
1. 前言概览 js 是一门单线程的非阻塞的脚本语言 单线程:只有一个主线程处理所有任务 非阻塞:有异步任务,主线程挂起这个任务,等异步返回结果再根据一定规则执行 2. 宏任务与微任务 都是异步任务宏任务:script 标签&a…...

电子邮件发送接收原理(附 go 语言实现发送邮件)
前言 首先要了解电子邮件的发送接收,不是点到点的。我想给你传达个消息,不是直接我跑到你家里喊你:“嘿,xxx,是你的益达,快拿走”。 而是类似快递的发送收取方式,是有服务器的中转的。我先将我…...

体系结构评估——(三)风险承担者
风险承担者分为系统生产者、系统消费者、系统服务人员和其他四大类。 其中系统生产者有:软件系统架构师、开发人员、维护人员、集成人员、测试人员、标准专家、 性能工程师、安全专家、项目经理、产品线经理。 系统消费者有:客户、最终用户、应用开发…...

【HarmonyOS】元服务卡片展示动态数据,并定点更新卡片数据
【关键字】 元服务卡片、卡片展示动态数据、更新卡片数据 【写在前面】 本篇文章主要介绍开发元服务卡片时,如何实现卡片中动态显示数据功能,并实现定时数据刷新。本篇文章通过实现定时刷新卡片中日期数据为例,讲述展示动态数据与更新数据功…...

SaveFileDialog.OverwritePrompt
SaveFileDialog.OverwritePrompt 获取或设置一个值,该值指示如果用户指定的文件名已存在,Save As 对话框是否显示警告。 public bool OverwritePrompt { get; set; } OverwritePrompt 控制在将要在改写现在文件时是否提示用户 https://vimsky.com/…...

oracle统计信息
1. 查看表的统计信息 1.建表 SQL> create table test as select * from dba_objects;2.查看表的统计信息 select owner, table_name, num_rows, blocks, avg_row_lenfrom dba_tableswhere owner SCOTTand table_name TEST; OWNER TABLE_NAME NUM_ROWS BLO…...

LeetCode 面试题 16.01. 交换数字
文章目录 一、题目二、C# 题解 一、题目 编写一个函数,不用临时变量,直接交换 numbers [a, b] 中 a 与 b 的值。 示例: 输入: numbers [1,2] 输出: [2,1] 提示: numbers.length 2-2147483647 < numbers[i] < 214748364…...

手机apn介绍
公司遇到一件很棘手的事情,app发版之后,长江以北地方的用户网络信号很好,但是打开app之后网络连接不上,而长江以南的用户网络却很好。大家找了很多资料,提出一些方案: 1、是不是运营商把我们公司的ip给限制…...

垃圾回收系统小程序
在当今社会,废品回收不仅有利于环境保护,也有利于资源的再利用。随着互联网技术的发展,个人废品回收也可以通过小程序来实现。本文将介绍如何使用乔拓云网制作个人废品回收小程序。 1. 找一个合适的第三方制作平台/工具,比如乔拓云…...

【随机过程】布朗运动
这里写目录标题 Brownian motion Brownian motion The brownian motion 1D and brownian motion 2D functions, written with the cumsum command and without for loops, are used to generate a one-dimensional and two-dimensional Brownian motion, respectively. 使用cu…...

基于机器视觉的车道线检测 计算机竞赛
文章目录 1 前言2 先上成果3 车道线4 问题抽象(建立模型)5 帧掩码(Frame Mask)6 车道检测的图像预处理7 图像阈值化8 霍夫线变换9 实现车道检测9.1 帧掩码创建9.2 图像预处理9.2.1 图像阈值化9.2.2 霍夫线变换 最后 1 前言 🔥 优质竞赛项目系列,今天要分…...

C语言文件读写,文件相关操作
文章目录 C语言文件读写,文件相关操作1.C语言万物皆是地址,文件读操作2.文件的写3.文件的复制4.获取文件的大小5.文件的加密解密 C语言文件读写,文件相关操作 1.C语言万物皆是地址,文件读操作 // // Created by MagicBook on 20…...

竞赛选题 深度学习卷积神经网络的花卉识别
文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基…...

CMake教程 - basic point
CMake教程 - basic point 1 - Building a Basic Project 最基本的CMake项目是由单个源代码文件构建的可执行文件。对于像这样简单的项目,只需要一个带有三个命令的CMakeLists.txt文件。 注意:尽管CMake支持大写、小写和混合大小写命令,但小…...

day52--动态规划11
想死,但感觉死的另有其人,,怎么还在动态规划!!!!! 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV 第一题:买卖股票的最佳时机III 给定一个数组,它…...

Jenkins入门级安装部署
前言 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件项目可以进行持续集成。通常,项目中常用Jenkins作为编译打包项目的工具࿰…...

tcpdump 异常错误
tcpdump 进行抓包的时候,-w 提示 Permission denied: sudo tcpdump -w test1.log tcpdump: test1.log: Permission denied 开始以为是用户权限的问题,后来换用 root 账户还是不行,经搜索,是 AppArmor 的问题。 解决方…...

如何绘制【逻辑回归】中threshold参数的学习曲线
threshold参数的意义是通过筛选掉低于threshold的参数,来对逻辑回归的特征进行降维。 首先导入相应的模块: from sklearn.linear_model import LogisticRegression as LR from sklearn.datasets import load_breast_cancer from sklearn.model_selecti…...

4.1 数据库安全性概述
思维导图: 前言: - **第一章回顾**:数据库特点 - 统一的数据保护功能,确保数据安全、可靠、正确有效。 - 数据保护主要涵盖: 1. **数据的安全性**(本章焦点) 2. 数据的完整性(第…...

tftp服务的搭建
TFTP服务的搭建 1 先更新一下apt包 sudo apt-get update2 服务器端(虚拟机上)安装 TFTP相关软件 sudo apt-get install xinetd tftp tftpd -y3 创建TFTP共享目录 mkdir tftp_sharetftp_shaer的路径是/home/cwz/tftp_share 3.1 修改共享目录的权限 sudo chmod -R 777 tftp…...

c语言简介
C 语言最初是作为 Unix 系统的开发工具而发明的。 1969年,美国贝尔实验室的肯汤普森(Ken Thompson)与丹尼斯里奇(Dennis Ritchie)一起开发了 Unix 操作系统。Unix 是用汇编语言写的,无法移植到其他计算机&…...

OpenLayers.js 入门教程:打造互动地图的入门指南
本文简介 戴尬猴,我是德育处主任 本文介绍如何使用 OpenLayers.js (后面简称 ol)。ol 是一个开源 JavaScript 库,可用于在Web页面上创建交互式地图。 ol能帮助我们在浏览器轻松地使用地图功能,例如地图缩放、地图拖动…...

黑马头条:app端文章查看
黑马头条:app端文章查看 黑马头条:app端文章查看文章列表加载1. 需求分析2. 表结构分析3. 导入文章数据库3.1 导入数据库3.2 导入对应的实体类 4. 实现思路5. 接口定义6. 功能实现6.1:导入heima-leadnews-article微服务,资料在当天…...

常见使用总结篇(一)
Autowired和Resource注解的区别 Autowired注解是Spring提供的,Resource注解是J2EE本身提供Autowird注解默认通过byType方式注入(没有匹配会通过byName方式),而Resource注解默认通过byName方式注入(没有匹配会通过byType方式)Autowired注解注入的对象需要…...

【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《数据库系统》
在数据库章节中可能会考察以下内容: 文章目录 数据库完整性约束🌟数据库模式🌟🌟ER模式🌟关系代数🌟🌟并发控制🌟数据仓库与数据挖掘🌟🌟反规范化技术&#x…...

北邮22级信通院数电:Verilog-FPGA(7)第七周实验(1):带使能端的38译码器全加器(关注我的uu们加群咯~)
北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 关注作者的uu们可以进群啦~ 目录 方法一ÿ…...

SIT3491ISO具有隔离功能,256 节点,全双工 RS422/RS485 芯片
SIT3491ISO 是一款电容隔离的全双工 RS-422/485 收发器,总线端口 ESD 保护能力 HBM 达到 15kV 以上,功能完全满足 EIA-422 以及 TIA/EIA-485 标准要求的 RS-422/485 收发器。 SIT3491ISO 包括一个驱动器和一个接收器,两者均…...