竞赛选题 深度学习卷积神经网络的花卉识别
文章目录
- 0 前言
- 1 项目背景
- 2 花卉识别的基本原理
- 3 算法实现
- 3.1 预处理
- 3.2 特征提取和选择
- 3.3 分类器设计和决策
- 3.4 卷积神经网络基本原理
- 4 算法实现
- 4.1 花卉图像数据
- 4.2 模块组成
- 5 项目执行结果
- 6 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
基于深度学习卷积神经网络的花卉识别
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 项目背景
在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。
花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。
2 花卉识别的基本原理
花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。
3 算法实现
3.1 预处理
预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。
3.2 特征提取和选择
要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。
特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。
3.3 分类器设计和决策
构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。
在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。
3.4 卷积神经网络基本原理
卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。
CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。
CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。
典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。
4 算法实现
4.1 花卉图像数据
花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。
以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件
4.2 模块组成
示例代码主要由四个模块组成:
- input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
- model.py——模型模块,构建完整的CNN模型
- train.py——训练模块,训练模型,并保存训练模型结果
- test.py——测试模块,测试模型对图片识别的准确度
项目模块执行顺序
运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
import os
import math
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# -----------------生成图片路径和标签的List------------------------------------
train_dir = 'D:/ML/flower/input_data'roses = []
label_roses = []
tulips = []
label_tulips = []
dandelion = []
label_dandelion = []
sunflowers = []
label_sunflowers = []
定义函数get_files,获取图片列表及标签列表
# step1:获取所有的图片路径名,存放到# 对应的列表中,同时贴上标签,存放到label列表中。def get_files(file_dir, ratio):for file in os.listdir(file_dir + '/roses'):roses.append(file_dir + '/roses' + '/' + file)label_roses.append(0)for file in os.listdir(file_dir + '/tulips'):tulips.append(file_dir + '/tulips' + '/' + file)label_tulips.append(1)for file in os.listdir(file_dir + '/dandelion'):dandelion.append(file_dir + '/dandelion' + '/' + file)label_dandelion.append(2)for file in os.listdir(file_dir + '/sunflowers'):sunflowers.append(file_dir + '/sunflowers' + '/' + file)label_sunflowers.append(3)# step2:对生成的图片路径和标签List做打乱处理image_list = np.hstack((roses, tulips, dandelion, sunflowers))label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))# 利用shuffle打乱顺序temp = np.array([image_list, label_list])temp = temp.transpose()np.random.shuffle(temp)# 将所有的img和lab转换成listall_image_list = list(temp[:, 0])all_label_list = list(temp[:, 1])# 将所得List分为两部分,一部分用来训练tra,一部分用来测试val# ratio是测试集的比例n_sample = len(all_label_list)n_val = int(math.ceil(n_sample * ratio)) # 测试样本数n_train = n_sample - n_val # 训练样本数tra_images = all_image_list[0:n_train]tra_labels = all_label_list[0:n_train]tra_labels = [int(float(i)) for i in tra_labels]val_images = all_image_list[n_train:-1]val_labels = all_label_list[n_train:-1]val_labels = [int(float(i)) for i in val_labels]return tra_images, tra_labels, val_images, val_labels
定义函数get_batch,生成训练批次数据
# --------------------生成Batch----------------------------------------------# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
# image_W, image_H, :设置好固定的图像高度和宽度
# 设置batch_size:每个batch要放多少张图片
# capacity:一个队列最大多少
定义函数get_batch,生成训练批次数据
def get_batch(image, label, image_W, image_H, batch_size, capacity):# 转换类型image = tf.cast(image, tf.string)label = tf.cast(label, tf.int32)# make an input queueinput_queue = tf.train.slice_input_producer([image, label])label = input_queue[1]image_contents = tf.read_file(input_queue[0]) # read img from a queue# step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。image = tf.image.decode_jpeg(image_contents, channels=3)# step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)image = tf.image.per_image_standardization(image)# step4:生成batch# image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32# label_batch: 1D tensor [batch_size], dtype=tf.int32image_batch, label_batch = tf.train.batch([image, label],batch_size=batch_size,num_threads=32,capacity=capacity)# 重新排列label,行数为[batch_size]label_batch = tf.reshape(label_batch, [batch_size])image_batch = tf.cast(image_batch, tf.float32)return image_batch, label_batch
model.py——CN模型构建
import tensorflow as tf#定义函数infence,定义CNN网络结构#卷积神经网络,卷积加池化*2,全连接*2,softmax分类#卷积层1def inference(images, batch_size, n_classes):with tf.variable_scope('conv1') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),name = 'weights',dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv1 = tf.nn.relu(pre_activation, name=scope.name)# 池化层1# 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。with tf.variable_scope('pooling1_lrn') as scope:pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')# 卷积层2# 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()with tf.variable_scope('conv2') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv2 = tf.nn.relu(pre_activation, name='conv2')# 池化层2# 3x3最大池化,步长strides为2,池化后执行lrn()操作,# pool2 and norm2with tf.variable_scope('pooling2_lrn') as scope:norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')# 全连接层3# 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()with tf.variable_scope('local3') as scope:reshape = tf.reshape(pool2, shape=[batch_size, -1])dim = reshape.get_shape()[1].valueweights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)# 全连接层4# 128个神经元,激活函数relu()with tf.variable_scope('local4') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')# dropout层# with tf.variable_scope('dropout') as scope:# drop_out = tf.nn.dropout(local4, 0.8)# Softmax回归层# 将前面的FC层输出,做一个线性回归,计算出每一类的得分with tf.variable_scope('softmax_linear') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),name='softmax_linear', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),name='biases', dtype=tf.float32)softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')return softmax_linear# -----------------------------------------------------------------------------# loss计算# 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1# 返回参数:loss,损失值def losses(logits, labels):with tf.variable_scope('loss') as scope:cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,name='xentropy_per_example')loss = tf.reduce_mean(cross_entropy, name='loss')tf.summary.scalar(scope.name + '/loss', loss)return loss# --------------------------------------------------------------------------# loss损失值优化# 输入参数:loss。learning_rate,学习速率。# 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。def trainning(loss, learning_rate):with tf.name_scope('optimizer'):optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)global_step = tf.Variable(0, name='global_step', trainable=False)train_op = optimizer.minimize(loss, global_step=global_step)return train_op# -----------------------------------------------------------------------# 评价/准确率计算# 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。# 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。def evaluation(logits, labels):with tf.variable_scope('accuracy') as scope:correct = tf.nn.in_top_k(logits, labels, 1)correct = tf.cast(correct, tf.float16)accuracy = tf.reduce_mean(correct)tf.summary.scalar(scope.name + '/accuracy', accuracy)return accuracy
train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练
import input_data
import model# 变量声明
N_CLASSES = 4 # 四种花类型
IMG_W = 64 # resize图像,太大的话训练时间久
IMG_H = 64
BATCH_SIZE = 20
CAPACITY = 200
MAX_STEP = 2000 # 一般大于10K
learning_rate = 0.0001 # 一般小于0.0001# 获取批次batch
train_dir = 'F:/input_data' # 训练样本的读入路径
logs_train_dir = 'F:/save' # logs存储路径# train, train_label = input_data.get_files(train_dir)
train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)
# 训练数据及标签
train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
# 测试数据及标签
val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 训练操作定义
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
train_loss = model.losses(train_logits, train_label_batch)
train_op = model.trainning(train_loss, learning_rate)
train_acc = model.evaluation(train_logits, train_label_batch)# 测试操作定义
test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)
test_loss = model.losses(test_logits, val_label_batch)
test_acc = model.evaluation(test_logits, val_label_batch)# 这个是log汇总记录
summary_op = tf.summary.merge_all()# 产生一个会话
sess = tf.Session()
# 产生一个writer来写log文件
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
# 产生一个saver来存储训练好的模型
saver = tf.train.Saver()
# 所有节点初始化
sess.run(tf.global_variables_initializer())
# 队列监控
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)# 进行batch的训练
try:# 执行MAX_STEP步的训练,一步一个batchfor step in np.arange(MAX_STEP):if coord.should_stop():break_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writerif step % 10 == 0:print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))summary_str = sess.run(summary_op)train_writer.add_summary(summary_str, step)# 每隔100步,保存一次训练好的模型if (step + 1) == MAX_STEP:checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)except tf.errors.OutOfRangeError:print('Done training -- epoch limit reached')finally:coord.request_stop()
test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果
import matplotlib.pyplot as pltimport modelfrom input_data import get_files# 获取一张图片def get_one_image(train):# 输入参数:train,训练图片的路径# 返回参数:image,从训练图片中随机抽取一张图片n = len(train)ind = np.random.randint(0, n)img_dir = train[ind] # 随机选择测试的图片img = Image.open(img_dir)plt.imshow(img)plt.show()image = np.array(img)return image# 测试图片def evaluate_one_image(image_array):with tf.Graph().as_default():BATCH_SIZE = 1N_CLASSES = 4image = tf.cast(image_array, tf.float32)image = tf.image.per_image_standardization(image)image = tf.reshape(image, [1, 64, 64, 3])logit = model.inference(image, BATCH_SIZE, N_CLASSES)logit = tf.nn.softmax(logit)x = tf.placeholder(tf.float32, shape=[64, 64, 3])# you need to change the directories to yours.logs_train_dir = 'F:/save/'saver = tf.train.Saver()with tf.Session() as sess:print("Reading checkpoints...")ckpt = tf.train.get_checkpoint_state(logs_train_dir)if ckpt and ckpt.model_checkpoint_path:global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]saver.restore(sess, ckpt.model_checkpoint_path)print('Loading success, global_step is %s' % global_step)else:print('No checkpoint file found')prediction = sess.run(logit, feed_dict={x: image_array})max_index = np.argmax(prediction)if max_index == 0:result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])elif max_index == 1:result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])elif max_index == 2:result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])else:result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])return result# ------------------------------------------------------------------------if __name__ == '__main__':img = Image.open('F:/input_data/dandelion/1451samples2.jpg')plt.imshow(img)plt.show()imag = img.resize([64, 64])image = np.array(imag)print(evaluate_one_image(image))
5 项目执行结果
执行train模块,结果如下:
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
执行test模块,结果如下:
关闭显示的测试图片后,console查看测试结果如下:
做一个GUI交互界面
6 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛选题 深度学习卷积神经网络的花卉识别
文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基…...

CMake教程 - basic point
CMake教程 - basic point 1 - Building a Basic Project 最基本的CMake项目是由单个源代码文件构建的可执行文件。对于像这样简单的项目,只需要一个带有三个命令的CMakeLists.txt文件。 注意:尽管CMake支持大写、小写和混合大小写命令,但小…...

day52--动态规划11
想死,但感觉死的另有其人,,怎么还在动态规划!!!!! 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV 第一题:买卖股票的最佳时机III 给定一个数组,它…...

Jenkins入门级安装部署
前言 Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件项目可以进行持续集成。通常,项目中常用Jenkins作为编译打包项目的工具࿰…...

tcpdump 异常错误
tcpdump 进行抓包的时候,-w 提示 Permission denied: sudo tcpdump -w test1.log tcpdump: test1.log: Permission denied 开始以为是用户权限的问题,后来换用 root 账户还是不行,经搜索,是 AppArmor 的问题。 解决方…...

如何绘制【逻辑回归】中threshold参数的学习曲线
threshold参数的意义是通过筛选掉低于threshold的参数,来对逻辑回归的特征进行降维。 首先导入相应的模块: from sklearn.linear_model import LogisticRegression as LR from sklearn.datasets import load_breast_cancer from sklearn.model_selecti…...

4.1 数据库安全性概述
思维导图: 前言: - **第一章回顾**:数据库特点 - 统一的数据保护功能,确保数据安全、可靠、正确有效。 - 数据保护主要涵盖: 1. **数据的安全性**(本章焦点) 2. 数据的完整性(第…...

tftp服务的搭建
TFTP服务的搭建 1 先更新一下apt包 sudo apt-get update2 服务器端(虚拟机上)安装 TFTP相关软件 sudo apt-get install xinetd tftp tftpd -y3 创建TFTP共享目录 mkdir tftp_sharetftp_shaer的路径是/home/cwz/tftp_share 3.1 修改共享目录的权限 sudo chmod -R 777 tftp…...

c语言简介
C 语言最初是作为 Unix 系统的开发工具而发明的。 1969年,美国贝尔实验室的肯汤普森(Ken Thompson)与丹尼斯里奇(Dennis Ritchie)一起开发了 Unix 操作系统。Unix 是用汇编语言写的,无法移植到其他计算机&…...

OpenLayers.js 入门教程:打造互动地图的入门指南
本文简介 戴尬猴,我是德育处主任 本文介绍如何使用 OpenLayers.js (后面简称 ol)。ol 是一个开源 JavaScript 库,可用于在Web页面上创建交互式地图。 ol能帮助我们在浏览器轻松地使用地图功能,例如地图缩放、地图拖动…...

黑马头条:app端文章查看
黑马头条:app端文章查看 黑马头条:app端文章查看文章列表加载1. 需求分析2. 表结构分析3. 导入文章数据库3.1 导入数据库3.2 导入对应的实体类 4. 实现思路5. 接口定义6. 功能实现6.1:导入heima-leadnews-article微服务,资料在当天…...

常见使用总结篇(一)
Autowired和Resource注解的区别 Autowired注解是Spring提供的,Resource注解是J2EE本身提供Autowird注解默认通过byType方式注入(没有匹配会通过byName方式),而Resource注解默认通过byName方式注入(没有匹配会通过byType方式)Autowired注解注入的对象需要…...

【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《数据库系统》
在数据库章节中可能会考察以下内容: 文章目录 数据库完整性约束🌟数据库模式🌟🌟ER模式🌟关系代数🌟🌟并发控制🌟数据仓库与数据挖掘🌟🌟反规范化技术&#x…...

北邮22级信通院数电:Verilog-FPGA(7)第七周实验(1):带使能端的38译码器全加器(关注我的uu们加群咯~)
北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 关注作者的uu们可以进群啦~ 目录 方法一ÿ…...

SIT3491ISO具有隔离功能,256 节点,全双工 RS422/RS485 芯片
SIT3491ISO 是一款电容隔离的全双工 RS-422/485 收发器,总线端口 ESD 保护能力 HBM 达到 15kV 以上,功能完全满足 EIA-422 以及 TIA/EIA-485 标准要求的 RS-422/485 收发器。 SIT3491ISO 包括一个驱动器和一个接收器,两者均…...

在windows服务器上部署一个单机项目以及前后端分离项目
目录 一. 单机项目在windows服务器上的部署 1.1 在本机上测试项目无误 1.1.1 在数据库中测试sql文件没问题 1.1.2 在tomcat中测试war文件无误 1.1.3 测试完成后,进入浏览器运行单机项目确保无误 1.2 在windows服务器中运行项目 二. 前后端分离项目在服务器上…...

使用jdbc技术,在数据库中存储大数据对象(使用字节IO流读取图片等给blob等二进制类型数据赋值)
在MySQL中,BLOB是一种数据类型,代表二进制大对象(Binary Large Object),可以存储大量的二进制数据,如图像、声音、视频等。BLOB类型的数据在存储和检索时会以二进制方式进行处理,而不是字符方式…...

统计学习方法 支持向量机(下)
文章目录 统计学习方法 支持向量机(下)非线性支持向量机与和核函数核技巧正定核常用核函数非线性 SVM 序列最小最优化算法两个变量二次规划的求解方法变量的选择方法SMO 算法 统计学习方法 支持向量机(下) 学习李航的《统计学习方…...

【python】如何注释
一:通过#注释行 #这个是个注释 print(hello world) 二:通过或"""注释段落 这个注释段落 这是注释段落 这是注释段落print(hello world) """ 这是多行注释,用三个双引号 这是多行注释,用三个双引…...

C++——C++入门(二)
C 前言一、引用引用概念引用特性常引用使用场景传值、传引用效率比较值和引用的作为返回值类型的性能比较 引用和指针的区别 二、内联函数概念特性知识点提升 三、auto关键字类型别名思考auto简介auto的使用细则auto不能推导的场景 四、基于范围的for循环范围for的语法范围for的…...

容联七陌百度营销通BCP解决方案,让营销更精准
百度营销通作为一个快速迭代、满足客户多元化营销需求的高效率营销工具成为众多企业的选择,通过百度营销通BCP对接,企业就可以在百度咨询页接入会话,收集百度来源的访客搜索关键词,通过百度推广获取更多的精准客户,从而…...

Transformer模型 | 用于目标检测的视觉Transformers训练策略
基于视觉的Transformer在预测准确的3D边界盒方面在自动驾驶感知模块中显示出巨大的应用,因为它具有强大的建模视觉特征之间远程依赖关系的能力。然而,最初为语言模型设计的变形金刚主要关注的是性能准确性,而不是推理时间预算。对于像自动驾驶这样的安全关键系统,车载计算机…...

贪心区间类题目
一、先排序 1、一般统计有几个重复区间、判断是否有重复区间,对右边界经行排序。 2、合并区间,对左边界经行排序,且尽量想到先放入一个元素到res中,然后不断更新res的右边界 二、判断重复 判断i是否和i-1重复,如果…...

npm改变npm缓存路径和改变环境变量
在安装nodejs时,系统会自动安装在系统盘C, 时间久了经常会遇到C盘爆满,有时候出现红色,此时才发现很多时候是因为npm 缓存保存在C盘导致的,下面就介绍下如何改变npm缓存路径。 1、首先找到安装nodejs的路径,…...

string到QString出现中文乱码
【C】string 和 QString 之间的转化及乱码问题(非常实用)_string转qstring乱码_散修-小胖子的博客-CSDN博客 std::string str "连111";QString str1 QString::fromStdString(str);qDebug() << str1;//中文乱码QString str2 QString::fromLocal8Bit(str.data…...

【Linux精讲系列】——yum软件包管理
作者主页 📚lovewold少个r博客主页 ⚠️本文重点:Linux系统软件包管理工具yum讲解 😄每日一言:踏向彼岸的每一步,都是到达彼岸本身。 目录 前言 Linux系统下的软件下载方式 yum 查看软件包 如何安装软件 如何卸…...

浅谈一下Vue3的TreeShaking特性
什么是Treeshaking? Treeshaking是一个术语,通常用于描述移除JavaScript中无用代码的过程。 在Vue3中,借助于它的编译优化,可以显著减少打包后的大小。 Vue3的Treeshaking实现 Vue3中的Treeshaking主要通过以下两点实现: 源码级的Tree-shaking Vue3源码采用ES mo…...

【牛牛送书 | 第二期】《ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与实践》
目录 前言: 本书目录: 内容简介: 专家评价: 适合对象: 送书规则: 前言: 现如今,随着计算机技术的不断发展和互联网的普及,我们已经迈入了一个高效的信息处理和传…...

Qt基础之三十九:Qt Creator调试技巧
目录 一.开始调试(F5) 二.调试dll 1.Attach to Running Application 2.Attach to Unstarted Application 3.Start and Debug External Application...

Docker Nginx安装使用以及踩坑点总结
Docker Nginx安装使用以及踩坑点总结 拉取nginx镜像 docker pull nginx:latest运行镜像 暂时不需要配置volume挂载 docker run --name nginx -p 80:80 -d nginx参数详解: --name nginx 指定容器的名称 -p 80:80 映射端口 -d 守护进程运行 创建volume目录 mk…...