当前位置: 首页 > news >正文

Sql Server中的表组织和索引组织(聚集索引结构,非聚集索引结构,堆结构)

正文
SqlServer用三种方法来组织其分区中的数据或索引页:

1、聚集索引结构

聚集索引是按B树结构进行组织的,B树中的每一页称为一个索引节点。每个索引行包含一个键值和一个指针。指针指向B树上的某一中间级页(比如根节点指向中间级节点中的索引页)或叶级索引中的某个数据行(比如中间级索引页中的某个索引行指向叶子节点中的数据页)。每级索引中的页均被链接在双向链接列表中。数据链内的页和行将按聚集索引键值进行排序,聚集索引保证了表格的数据按照索引行的顺序排列;
补充(PS:2012-7-9)
从上图可以看出,聚集索引的叶子节点是由数据页组成的,表中所有的数据都包含在了聚集索引的叶子节点当中。这也是为什么前一篇博客中提到“If the index is a clustered index then an index scan is really a table scan.”的原因。

补充(PS:2012-7-13)
今天突然理解为什么说聚集索引是带真实数据的。这是因为数据本身也是索引的一部分了。数据内容本身按照一个规则排列,那么排列规则+数据就组成了聚集索引。

举例:
汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。如果正文内容本身就是一种按照一定规则排列的目录,则称之为“聚集索引”。
在这里插入图片描述

2、堆结构

堆是没有聚集索引的表,用"索引分配映射(IAM)"页将堆的页面联系在一起。如下图所示
堆内的数据页和行没有任何特定的顺序;页面也不链接在一起,数据页之间唯一的逻辑连接是记录在IAM页内的信息,页面与页面之间没有什么紧密的联系;用IAM页查找数据页集合中的每一页。从数据存储管理上来讲,用堆去管理一个超大的表格是比较吃力的,经常使用的表格上都建立聚集索引。

sql server默认是在主键上建立聚集索引的。就是可以让您的数据在数据库中按照id进行物理排序,但这样做意义不大,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。因为很少用id号来进行查询,这就使让id号这个主键作为聚集索引成为一种资源浪费。

3、非聚集索引

非聚集索引与聚集索引具有相同的 B 树结构,但是他们之间还是存在显著差异,主要有一下三点:

非聚集索引不影响数据行的顺序。
基础表的数据行不按非聚集键的顺序排序和存储,
非聚集索引的叶层是由索引页而不是由数据页组成,非聚集索引不会去改变或改善数据页的存储模式。
既可以使用聚集索引来为表或视图定义非聚集索引,也可以根据堆来定义非聚集索引。非聚集索引中的每个索引行都包含非聚集键值和行定位符。此定位符指向聚集索引或堆中包含该键值的数据行。

非聚集索引行中的行定位器可以是指向行的指针,也可以是行的聚集索引键,具体根据如下情况而定:

如果表是堆(意味着该表没有聚集索引),则行定位器是指向行的指针。该指针由文件标识符 (ID)、页码和页上的行数生成。整个指针称为行 ID (RID)。
如果表有聚集索引或索引视图上有聚集索引,则行定位器是行的聚集索引键。如果聚集索引不是唯一的索引,SQL Server 将添加在内部生成的值(称为唯一值)以使所有重复键唯一。此四字节的值对于用户不可见。仅当需要使聚集键唯一以用于非聚集索引中时,才添加该值。SQL Server 通过使用存储在非聚集索引的叶行内的聚集索引键搜索聚集索引来检索数据行。

补充(PS:2012-7-9)
从上图可以看出,非聚集索引的叶子节点是由索引页组成的,索引页中每一个索引行的格式是“索引键值+指针”的形式,索引键值就是我们表中的一个列,如果是复合索引,索引键值就是多个列。而指针的具体指向需要根据表的组织结构而定,如果这张表中已经存在聚集索引了,那么指针指向的是聚集索引,如果表中没有加聚集索引,那么这张表就是无序的堆结构,指针指向表中每一条记录所在的位置。因此,索引行跟数据行是一一对应的,假如一个查询中select后面查询的列和where后面的条件列都在索引当中,那么就是索引覆盖,此时不需要再通过索引行的指针去找数据页,直接返回索引页中的内容就可以了。

举例
在这里插入图片描述

聚集索引与非聚集索引的区分

区分聚集索引和非聚集索引的一个主要方法是查看叶子节点,如果叶子节点是真实的数据,那么就是聚集索引;如果叶子节点是指针,那么就是非聚集索引。

如果是在一个有聚集索引的表中使用非聚集索引,那么这个非聚集索引叶子节点指向的是聚集索引的位置,如果没有聚集索引, 那么就指向数据页的rowid,这样的表示无序的,也叫做堆表。

举例说明聚集索引与非聚集索引的关系(ps:2012-7-17)
如下图所示,我们需要查找一个First Name为Anson的人的Last Name,我们在First Name字段上创建了非聚集索引,在employeeID列上创建了聚集索引。那么我们的查询步骤是通过非聚集索引查找Anson,然后再非聚集索引的叶子节点上找到了聚集索引的键值7,然后通过这个键值7再去查找聚集索引。不过在聚集索引的叶子节点中保存的就是真实数据,因此我们在聚集索引的叶子节点找到了Anson的Last Name 是Kim。

这就是我们前面提到的,聚集索引的叶子节点是真实的数据,而非聚集索引的叶子节点是一个bookmark,这个bookmark可能是两种情况,如果表中有聚集索引,那么这个bookmark就是聚集索引的键值(我们经常说是指向聚集索引,更准确的说应该是聚集索引的键值,然后通过这个键值直接去聚集索引中查找我们需要的数据行),如果没有聚集索引,那么这个bookmark就是 row identifier (RID,行标识符), 格式为"File#:Page#:Slot#"。

相关文章:

Sql Server中的表组织和索引组织(聚集索引结构,非聚集索引结构,堆结构)

正文 SqlServer用三种方法来组织其分区中的数据或索引页: 1、聚集索引结构 聚集索引是按B树结构进行组织的,B树中的每一页称为一个索引节点。每个索引行包含一个键值和一个指针。指针指向B树上的某一中间级页(比如根节点指向中间级节点中的…...

C++类对象反制机制实现_精简修改版

前几天写的类对象反射机制太烦锁了,今天写个修改版的,精简为两个类 一个是类的数据结构,另一个是类的父类对象,把所有操作类的方法都写到父类中 1.类的信息结构体 struct Field_Node {TCHAR m_name[20]; //字段名称TCHAR m_typeName[20]; // 字段类型名称size_t m_typeHashC…...

C#开发的IEnumerable接口

C#开发的IEnumerable接口 在前面分析中,我们会遇到下面这行代码: var refineries = self.World.ActorsWithTrait<IAcceptResources>() .Where(r => r.Actor != ignore && r.Actor.Owner == self.Owner && IsAcceptableProcType(r.Actor)) .Select…...

Redis详细安装教程

目录 一、Redis 的安装及启动停止1-1 下载 redis的压缩包1-2 开始解压 redis1-3 执行 make 命令编译1-4 启动 redis修改配置文件1-5 设置远程连接1-6 设置后台启动1-7 设置密码1-8 配置服务启动&#xff08;使用 systemctl 的方法&#xff09;启动 redis配置开机启动操作redis使…...

36基于matlab的对分解层数和惩罚因子进行优化

基于matlab的对分解层数和惩罚因子进行优化。蚁狮优化算法优化VMD,算术优化算法优化VMD&#xff0c;遗传优化算法优化VMD&#xff0c;灰狼优化算法优化VMD&#xff0c;海洋捕食者优化算法优化VMD&#xff0c;粒子群优化VMD&#xff0c;麻雀优化算法优化VMD&#xff0c;鲸鱼优化…...

【Flutter】自定义分段选择器Slider

【Flutter】ZFJ自定义分段选择器Slider 前言 在开发一个APP的时候&#xff0c;需要用到一个分段选择器&#xff0c;系统的不满足就自己自定义了一个&#xff1b; 可以自定义节点的数量、自定义节点的大小、自定义滑竿的粗细&#xff0c;自定义气泡的有无等等… 基本上满足你…...

【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《软件工程》

在软考中软件工程模块主要包含以下考点&#xff1a; 文章目录 软件过程模型&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;逆向工程&#x1f31f;基于构件的软件工程&#x1f31f;&#x1f31f;软件开发与软件设计与维护净室软件工程软件模型软件需求 软件过程模型&am…...

非遗主题网站的设计与实现基于PHP实现

包括源码参考论文 下载地址: https://juzhendongli.store/commodity/details/18...

YOLO目标检测——红外人员数据集【含对应voc、coco和yolo三种格式标签+划分脚本】

实际项目应用&#xff1a;红外热像仪进行安全监控数据集说明&#xff1a;红外人员检测数据集&#xff0c;真实场景的高质量图片数据标签说明&#xff1a;使用lableimg标注软件标注&#xff0c;标注框质量高&#xff0c;含voc(xml)、coco(json)和yolo(txt)三种格式标签&#xff…...

C++项目——云备份-⑧-客户端各模块实现

文章目录 专栏导读1.客户端数据管理模块实现2.客户端文件检测模块实现3.客户端文件备份模块设计4.客户端文件备份模块实现 专栏导读 &#x1f338;作者简介&#xff1a;花想云 &#xff0c;在读本科生一枚&#xff0c;C/C领域新星创作者&#xff0c;新星计划导师&#xff0c;阿…...

分享一款基于 AI 的 Chrome 插件

最近使用大模型比较多&#xff0c;公司虽然提供了免费的 ChatGPT 但是需要跳转特定页面才能访问&#xff0c;比较麻烦&#xff0c;于是就想到是否可以开发一款类似于有道词典一样的 Chrome 插件&#xff0c;可以在任意页面使用&#xff0c;虽然市面上也有类似的插件&#xff0c…...

Spring Authorization Server 1.1 扩展实现 OAuth2 密码模式与 Spring Cloud 的整合实战

目录 前言无图无真相创建数据库授权服务器maven 依赖application.yml授权服务器配置AuthorizationServierConfigDefaultSecutiryConfig 密码模式扩展PasswordAuthenticationTokenPasswordAuthenticationConverterPasswordAuthenticationProvider JWT 自定义字段自定义认证响应认…...

第二证券:AIGC概念活跃,焦点科技、三维通信涨停,万兴科技大涨

AIGC概念24日盘中走势生动&#xff0c;到发稿&#xff0c;万兴科技、三态股份涨超10%&#xff0c;焦点科技、三维通讯、我国科传等涨停&#xff0c;中文在线涨超9%&#xff0c;果麦文明、新国都涨约7%。 消息面上&#xff0c;各大电商途径于10月18-24日先后发动“双11”大促或…...

7-4、S加减速转动实现【51单片机控制步进电机-TB6600系列】

摘要&#xff1a;本节介绍实现步进电机S曲线运动的代码 一、目标功能 实现步进电机转动总角度720&#xff0c;其中加减速各90 加速段&#xff1a;加速类型&#xff1a;S曲线   加速角度&#xff1a;角度为90   起步速度&#xff1a;30RPM&#xff0c;   终止速度&#x…...

RK3568-pcie接口

pcie接口与sata接口 pcie总线pcie总线pcie控制器sata控制器nvme设备sata设备nvme协议ahci协议m-key接口b-key接口RC模式和EP模式 RC和EP分别对应主模式和从模式,普通的PCI RC主模式可以用于连接PCI-E以太网芯片或PCI-E的硬盘等外设。 RC模式使用外设一般都有LINUX驱动程序,安…...

spring监听请求执行结束,移除当前ThreadLocal数据两种方法

在开发过程中&#xff0c;很多时候我们会使用ThreadLocal来临时缓存数据&#xff0c;当一次数据请求执行完成后需要主动执行释放当前ThreadLocal缓存数据资源&#xff0c;防止未能及时释放导致下一次访问时候ThreadLocal依然保持上一次缓存的数据。 spring提供两种方式去监听一…...

知识图谱--Jena基础操作和检索推理应用

在上一篇读书笔记中讲到知识图谱存储主要有基于开源的Jena方式和基于图数据库(Neo4j)方式,本次主要对Jena的基础操作和如何应用进行了实践总结,同时结合了D2R,将结构化数据转换成Jena可以加载的格式(即RDF,后缀是.nt),Apache Jena作为一种开源的Java语义网框架,主要功…...

GEE python——将GEE ASSETS中存储的影像或者矢量转化为数据格式XEE()

数据转换器是内置于 getPixels、computePixels、listFeatures 和 computeFeatures 中的客户端转换能力。通过指定兼容的文件格式,这些方法可以返回 Python 原生格式的数据,如用于栅格的结构化 NumPy 数组和用于矢量的 Pandas DataFrames 或 GeoPandas GeoDataFrames。对于矢量…...

Java集合框架:List、Set、Map类型及泛型详解

文章目录 &#x1f4d5;我是廖志伟&#xff0c;一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。&#x1f30e;跑过十五…...

Ubuntu 安装 docker

一.添加Docker官方GPG密钥 curl -fsSL http://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add - 如果出现&#xff1a; The program curl is currently not installed. You can install it by typing: sudo apt install curl 先安装 curl : sudo apt inst…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

虚幻基础:角色旋转

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 移动组件使用控制器所需旋转&#xff1a;组件 使用 控制器旋转将旋转朝向运动&#xff1a;组件 使用 移动方向旋转 控制器旋转和移动旋转 缺点移动旋转&#xff1a;必须移动才能旋转&#xff0c;不移动不旋转控制器…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...

Axure零基础跟我学:展开与收回

亲爱的小伙伴,如有帮助请订阅专栏!跟着老师每课一练,系统学习Axure交互设计课程! Axure产品经理精品视频课https://edu.csdn.net/course/detail/40420 课程主题:Axure菜单展开与收回 课程视频:...

spring boot使用HttpServletResponse实现sse后端流式输出消息

1.以前只是看过SSE的相关文章&#xff0c;没有具体实践&#xff0c;这次接入AI大模型使用到了流式输出&#xff0c;涉及到给前端流式返回&#xff0c;所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…...