当前位置: 首页 > news >正文

【智能大数据分析】实验1 MapReduce实验:单词计数

【智能大数据分析】实验1 MapReduce实验:单词计数

文章目录

  • 【智能大数据分析】实验1 MapReduce实验:单词计数
    • 一、实验目的
    • 二、实验要求
    • 三、实验原理
      • 1 MapReduce编程
      • 2 Java API解析
    • 四、实验步骤
      • 1 启动Hadoop
      • 2 验证HDFS上没有wordcount的文件夹
      • 3 上传数据文件到HDFS
      • 4 编写MapReduce程序
      • 5 使用命令将代码打包
      • 6 在Hadoop集群上提交jar文件来运行MapReduce作业

在我之前的一篇博客中:云计算中的大数据处理:尝试HDFS和MapReduce的应用有过类似的操作,具体不会的可以去这篇博客中看看。

一、实验目的

基于MapReduce思想,编写WordCount程序。

二、实验要求

1.理解MapReduce编程思想;

2.会编写MapReduce版本WordCount;

3.会执行该程序;

4.自行分析执行过程。

三、实验原理

MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。

适用范围:数据量大,但是数据种类小可以放入内存。

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

理解MapReduce和Yarn:在新版Hadoop中,Yarn作为一个资源管理调度框架,是Hadoop下MapReduce程序运行的生存环境。其实MapRuduce除了可以运行Yarn框架下,也可以运行在诸如Mesos,Corona之类的调度框架上,使用不同的调度框架,需要针对Hadoop做不同的适配。

一个完成的MapReduce程序在Yarn中执行过程如下:

(1)ResourcManager JobClient向ResourcManager提交一个job。

(2)ResourcManager向Scheduler请求一个供MRAppMaster运行的container,然后启动它。

(3)MRAppMaster启动起来后向ResourcManager注册。

(4)ResourcManagerJobClient向ResourcManager获取到MRAppMaster相关的信息,然后直接与MRAppMaster进行通信。

(5)MRAppMaster算splits并为所有的map构造资源请求。

(6)MRAppMaster做一些必要的MR OutputCommitter的准备工作。

(7)MRAppMaster向RM(Scheduler)发起资源请求,得到一组供map/reduce task运行的container,然后与NodeManager一起对每一个container执行一些必要的任务,包括资源本地化等。

(8)MRAppMaster 监视运行着的task 直到完成,当task失败时,申请新的container运行失败的task。

(9)当每个map/reduce task完成后,MRAppMaster运行MR OutputCommitter的cleanup 代码,也就是进行一些收尾工作。

(10)当所有的map/reduce完成后,MRAppMaster运行OutputCommitter的必要的job commit或者abort APIs。

(11)MRAppMaster退出。

1 MapReduce编程

编写在Hadoop中依赖Yarn框架执行的MapReduce程序,并不需要自己开发MRAppMaster和YARNRunner,因为Hadoop已经默认提供通用的YARNRunner和MRAppMaster程序, 大部分情况下只需要编写相应的Map处理和Reduce处理过程的业务程序即可。

编写一个MapReduce程序并不复杂,关键点在于掌握分布式的编程思想和方法,主要将计算过程分为以下五个步骤:

(1)迭代。遍历输入数据,并将之解析成key/value对。

(2)将输入key/value对映射(map)成另外一些key/value对。

(3)依据key对中间数据进行分组(grouping)。

(4)以组为单位对数据进行归约(reduce)。

(5)迭代。将最终产生的key/value对保存到输出文件中。

2 Java API解析

(1)InputFormat:用于描述输入数据的格式,常用的为TextInputFormat提供如下两个功能:

数据切分: 按照某个策略将输入数据切分成若干个split,以便确定Map Task个数以及对应的split。

为Mapper提供数据:给定某个split,能将其解析成一个个key/value对。

(2)OutputFormat:用于描述输出数据的格式,它能够将用户提供的key/value对写入特定格式的文件中。

(3)Mapper/Reducer: Mapper/Reducer中封装了应用程序的数据处理逻辑。

(4)Writable:Hadoop自定义的序列化接口。实现该类的接口可以用作MapReduce过程中的value数据使用。

(5)WritableComparable:在Writable基础上继承了Comparable接口,实现该类的接口可以用作MapReduce过程中的key数据使用。(因为key包含了比较排序的操作)。

四、实验步骤

本实验主要分为,确认前期准备,编写MapReduce程序,打包提交代码。查看运行结果这几个步骤,详细如下:

1 启动Hadoop

在这里插入图片描述

2 验证HDFS上没有wordcount的文件夹

在这里插入图片描述

此时HDFS上应该是没有wordcount文件夹。

3 上传数据文件到HDFS

wordcount.txt:
在这里插入图片描述
在这里插入图片描述

4 编写MapReduce程序

主要编写Map和Reduce类,其中Map过程需要继承org.apache.hadoop.mapreduce包中Mapper类,并重写其map方法;Reduce过程需要继承org.apache.hadoop.mapreduce包中Reduce类,并重写其reduce方法。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;import java.io.IOException;
import java.util.StringTokenizer;public class WordCount {public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {private final static IntWritable one = new IntWritable(1);private Text word = new Text();//map方法,划分一行文本,读一个单词写出一个<单词,1>public void map(Object key, Text value, Context context)throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {word.set(itr.nextToken());context.write(word, one);//写出<单词,1>}}}//定义reduce类,对相同的单词,把它们中的VList值全部相加public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public void reduce(Text key, Iterable<IntWritable> values,Context context)throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();//相当于<Hello,1><Hello,1>,将两个1相加}result.set(sum);context.write(key, result);//写出这个单词,和这个单词出现次数<单词,单词出现次数>}}public static void main(String[] args) throws Exception {//主方法,函数入口Configuration conf = new Configuration();           //实例化配置文件类Job job = new Job(conf, "WordCount");             //实例化Job类job.setInputFormatClass(TextInputFormat.class);     //指定使用默认输入格式类TextInputFormat.setInputPaths(job, args[0]);      //设置待处理文件的位置job.setJarByClass(WordCount.class);               //设置主类名job.setMapperClass(TokenizerMapper.class);        //指定使用上述自定义Map类job.setCombinerClass(IntSumReducer.class);        //指定开启Combiner函数job.setMapOutputKeyClass(Text.class);            //指定Map类输出的,K类型job.setMapOutputValueClass(IntWritable.class);     //指定Map类输出的,V类型job.setPartitionerClass(HashPartitioner.class);       //指定使用默认的HashPartitioner类job.setReducerClass(IntSumReducer.class);         //指定使用上述自定义Reduce类job.setNumReduceTasks(Integer.parseInt(args[2]));  //指定Reduce个数job.setOutputKeyClass(Text.class);                //指定Reduce类输出的,K类型job.setOutputValueClass(Text.class);               //指定Reduce类输出的,V类型job.setOutputFormatClass(TextOutputFormat.class);  //指定使用默认输出格式类TextOutputFormat.setOutputPath(job, new Path(args[1]));    //设置输出结果文件位置System.exit(job.waitForCompletion(true) ? 0 : 1);    //提交任务并监控任务状态}
}

在这里插入图片描述

5 使用命令将代码打包

上述代码在编译运行的时候会进行报错:
在这里插入图片描述

主要是在Hadoop版本3.x中,Job构造函数已过时,需要使用Job.getInstance构造函数。另外,有一个潜在的问题是设置job.setOutputValueClassText.class,但您的Reduce类输出类型是IntWritable,这两者需要匹配。

下面是修改之后的代码:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;
import java.util.StringTokenizer;public class WordCount {public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {private final static IntWritable one = new IntWritable(1);private Text word = new Text();public void map(Object key, Text value, Context context) throws IOException, InterruptedException {StringTokenizer itr = new StringTokenizer(value.toString());while (itr.hasMoreTokens()) {word.set(itr.nextToken());context.write(word, one);}}}public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable result = new IntWritable();public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();}result.set(sum);context.write(key, result);}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf, "WordCount");job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);job.setCombinerClass(IntSumReducer.class);job.setReducerClass(IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(job, new Path(args[0])); // 输入路径FileOutputFormat.setOutputPath(job, new Path(args[1])); // 输出路径System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

下面是打包过程:

  • 在我们创建的java项目根目录下创建一个名为src的文件夹。

  • 将所有的Java源代码文件(.java)移动到src文件夹中。

  • 在项目根目录中创建一个名为Manifest.txt的文件,用于指定JAR文件的入口点。

  • Manifest.txt文件中,添加以下内容:

    Main-Class: <Main-Class>
    

    <Main-Class>替换为包含main方法的主类的完整类名,例如我的是SalesDriver

  • 回到项目根目录下,使用以下命令编译Java源代码并创建一个临时目录来保存编译后的类文件:

    mkdir classes
    javac -d classes src/*.java
    

    如果你在使用编译命令时出现程序包×××存在的问题,这个时候我们需要将Hadoop相关的jar文件添加到编译路径中才可以解决:

    javac -classpath /usr/local/servers/hadoop/share/hadoop/common/hadoop-common-3.1.3.jar:/usr/local/servers/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-3.1.3.jar -d classes src/*.java
    

    注意上面的命令是一个而不是多个。

  • 创建一个空的JAR文件,命名为WordCount.jar

    jar -cvf WordCount.jar -C classes/ .
    
  • 将编译后的类文件和Manifest.txt添加到JAR文件中:

    jar -uf WordCount.jar -C classes/ .jar -uf WordCount.jar Mainfest.txt 
    

到现在,我们的整个java项目就打包成功了。

6 在Hadoop集群上提交jar文件来运行MapReduce作业

我们将打包好的WordCount.jar使用如下命令提交到集群上面:

hadoop jar WordCount.jar WordCount /user/wordcount.txt /wordcount

顺利执行之后终端会打印如下信息:

在这里插入图片描述

然后我们查看我们的输出目录:

hdfs dfs -ls /wordcount

在这里插入图片描述

红框所示就是我们需要的结果,我们将其下载下来进行查看:

hdfs dfs -get /wordcount1/part-r-00000 /root/WordCount
vim part-r-00000

在这里插入图片描述
可以看见运行出我们想要的结果了,至此本次实验结束。

相关文章:

【智能大数据分析】实验1 MapReduce实验:单词计数

【智能大数据分析】实验1 MapReduce实验&#xff1a;单词计数 文章目录 【智能大数据分析】实验1 MapReduce实验&#xff1a;单词计数一、实验目的二、实验要求三、实验原理1 MapReduce编程2 Java API解析 四、实验步骤1 启动Hadoop2 验证HDFS上没有wordcount的文件夹3 上传数据…...

KV STUDIO的安装与实践(一)

目录 什么是KV STUDIO&#xff1f; 如何安装KV STUDIO&#xff1f; 如何学习与使用KV STUDIO&#xff08;在现实中的应用&#xff09;&#xff1f; 应用一&#xff08;在现实生活中机器内部plc的读取与替换&#xff09; 读取 KV STUDIO实现显示器的检测&#xff01;&#…...

matlab simulink ADRC控制样例

1、内容简介 略 3-可以交流、咨询、答疑 2、内容说明 用adrc控制传递函数&#xff0c;保证输出达到预期 ADRC控制器、传递函数 3、仿真分析 4、参考论文 略...

我是如何走上测试管理岗的

最近有小伙伴问了一个问题&#xff1a;他所在的测试团队规模比较大&#xff0c;有 50 多个人&#xff0c;分成了 4 ~ 5 个小组。这位同学觉得自己的技术能力在团队里应该属于比较不错的&#xff0c;但疑惑的是在几次组织架构调整中&#xff0c;直属领导一直没有让他来管理一个小…...

回溯法:雀魂启动!

题目链接&#xff1a;雀魂启动&#xff01;_牛客题霸_牛客网 题解&#xff1a; 回溯法 1、用哈希思想构建映射表&#xff0c;标记已有的卡的种类和个数 2、遍历卡池&#xff0c;先从卡池中抽一张卡&#xff0c;因为只能抽一张卡&#xff0c;所以一种卡只判断一次 3、抽到卡后找…...

新的iLeakage攻击从Apple Safari窃取电子邮件和密码

图片 导语&#xff1a;学术研究人员开发出一种新的推测性侧信道攻击&#xff0c;名为iLeakage&#xff0c;可在所有最新的Apple设备上运行&#xff0c;并从Safari浏览器中提取敏感信息。 攻击概述 iLeakage是一种新型的推测性执行攻击&#xff0c;针对的是Apple Silicon CPU和…...

Java练习题2021-1

"从大于等于N的正整数里找到一个最小的数M&#xff0c;使之满足&#xff1a; M和M的逆序数&#xff08;如1230的逆序数为321&#xff09;的差的绝对值为一个[100000,200000]区间内的值。 输入说明&#xff1a;起始数字N&#xff1b; 输出说明&#xff1a;找到的第一个符合…...

微信小程序input输入字母自动转大写不生效问题解决

uniapp中开发的小程序&#xff0c;采用 style"text-transform:uppercase" H5中正常小写变大写&#xff0c;编译小程序后不生效 解决办法 uniapp中 input增加 input"TransFormationsFn" <input type"text" value"" input"…...

jmeter报Java.NET.BindException: Address already in use: connect

1、windows10和window11上&#xff1a; 修改注册表的内容&#xff1a; HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters&#xff1a; 新建dword&#xff08;值&#xff09;的类型&#xff1a; MaxUserPort 65334 TcpTimedWaitDelay 30window...

2023手工测试转自动化测试后,薪资可以达到多少?

目前手工测试工作了8个月&#xff0c;现已辞职在家学习全栈自动化测试的课程中&#xff0c;之前想着学完后工资期望7.5k&#xff0c;开发朋友说太少了 &#xff0c;想了解下这样的情况在日后找工作&#xff0c;薪资可以达到多少&#xff1f; 说到底&#xff0c;软件测试是技术…...

01 _ 为什么要学习数据结构和算法?

今天我们就来详细聊一聊&#xff0c;为什么要学习数据结构和算法。 想要通关大厂面试&#xff0c;千万别让数据结构和算法拖了后腿 很多大公司&#xff0c;比如BAT、Google、Facebook&#xff0c;面试的时候都喜欢考算法、让人现场写代码。有些人虽然技术不错&#xff0c;但每…...

C语言 每日一题 PTA 10.27 day5

1.高速公路超速处罚 按照规定&#xff0c;在高速公路上行使的机动车&#xff0c;达到或超出本车道限速的10 % 则处200元罚款&#xff1b; 若达到或超出50 % &#xff0c;就要吊销驾驶证。请编写程序根据车速和限速自动判别对该机动车的处理。 输入格式 : 输入在一行中给出2个正…...

Unity Shader当用户靠近的时候会出现吃鸡一样的光墙

效果图片 靠近墙壁 远离墙壁 材质球的设置 两张图片 使用方式 把这个脚本放到墙上&#xff0c;将player赋值给"_player"&#xff0c;然后运行&#xff0c;用户靠近就会根据距离显示光墙。 using UnityEngine;public class NewBehaviourScript : MonoBehaviour {pr…...

Xcode iOS app启用文件共享

在info.plist中添加如下两个配置 Supports opening documents in place Application supports iTunes file sharing 结果都为YES&#xff0c;如下图所示&#xff1a; 然后&#xff0c;iOS设备查看&#xff0c;文件->我的iPhone列表中有一个和你工程名相同的文件夹出现&…...

STM32H750之FreeRTOS学习--------(二)任务的创建和删除

FreeRTOS 二、任务的创建和删除 任务创建 动态方式创建任务 BaseType_t xTaskCreate ( TaskFunction_t pxTaskCode, /* 指向任务函数的指针 */ const char * const pcName, /* 任务名字&#xff0c;最大长度configMAX_TASK_NAME_LEN */const configSTACK_…...

Kafka - 3.x Producer 生产者最佳实践

文章目录 生产经验_生产者提高吞吐量核心参数Code 生产经验_数据可靠性消息的发送流程ACK应答机制ack应答级别应答机制 小结Code 生产经验_数据去重数据传递语义幂等性幂等性原理开启幂等性配置&#xff08;默认开启&#xff09; 生产者事务kafka事务原理事务代码流程 生产经验…...

对于多分类问题,使用深度学习(Keras)进行迁移学习提升性能

本文是仿照前面的文章,使用Keras迁移学习提升性能,原文是针对二分类问题,使用迁移学习的方式来提升准确率,本文用迁移学习的方式来提升多分类问题的准确率。 同时,在前面的文章中,使用普通的小型3层卷积网络+2层全连接层实现了多分类的85%左右的准确率, 此处将用迁移学…...

Python----break关键字对while...else结构的影响

案例&#xff1a; 女朋友生气&#xff0c;要求道歉5遍&#xff1a;老婆大人&#xff0c;我错了。道歉到第三遍的时候&#xff0c;媳妇埋怨这一遍说的不真诚&#xff0c;是不是就是要退出循环了&#xff1f;这个退出有两种可能性&#xff1a; ① 更生气&#xff0c;不打算原谅…...

js实现将文本生成二维码(腾讯云cos)

示例 页面代码 import { getQCodeUrl } from /utils/cosInstance; import { PageContainer } from ant-design/pro-components; import { Access, useAccess } from umijs/max; import { Button, Image } from antd; import { useState } from react;const AccessPage: Reac…...

机架式服务器介绍

大家都知道服务器分为机架式服务器、刀片式服务器、塔式服务器三类&#xff0c;今天小编就分别讲一讲这三种服务器&#xff0c;第一篇先来讲一讲机架式服务器的介绍。 机架式服务器定义&#xff1a;机架式服务器是安装在标准机柜中的服务器&#xff0c;一般采用19英寸的标准尺寸…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...