当前位置: 首页 > news >正文

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)

这篇博客是之前文章:

  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)
  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二)
  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)

的续篇。在这篇文章中,我们将学习如何把从 Elasticsearch 搜索到的结果传递到大数据模型以得到更好的结果。

如果你还没有创建好自己的环境,请参考第一篇文章进行详细地安装。

创建应用并展示

安装包

#!pip3 install langchain

导入包

from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.runnable import RunnableLambda
from langchain.schema import HumanMessage
from urllib.request import urlopen
import os, jsonload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
elastic_index_name='langchain-rag'

添加文档并将文档分成段落

with open('workplace-docs.json') as f:workplace_docs = json.load(f)print(f"Successfully loaded {len(workplace_docs)} documents")

metadata = []
content = []for doc in workplace_docs:content.append(doc["content"])metadata.append({"name": doc["name"],"summary": doc["summary"],"rolePermissions":doc["rolePermissions"]})text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)
docs = text_splitter.create_documents(content, metadatas=metadata)

Index Documents using ELSER - SparseVectorRetrievalStrategy()

from elasticsearch import Elasticsearchurl = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)es = ElasticsearchStore.from_documents(docs,es_url = url,es_connection = connection,es_user=elastic_user,es_password=elastic_password,index_name=elastic_index_name,strategy=ElasticsearchStore.SparseVectorRetrievalStrategy()
)

如果你还没有配置好自己的 ELSER,请参考之前的文章 “ Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)”。

在执行完上面的命令后,我们可以在 Kibana 中进行查看:

展示结果

def showResults(output):print("Total results: ", len(output))for index in range(len(output)):print(output[index])

r = es.similarity_search("work from home policy")
showResults(r)

RAG with Elasticsearch - Method 1 (Using Retriever)

retriever = es.as_retriever(search_kwargs={"k": 4})template = """Answer the question based only on the following context:
{context}Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)chain = ({"context": retriever, "question": RunnablePassthrough()} | prompt | ChatOpenAI() | StrOutputParser()
)chain.invoke("vacation policy")

RAG with Elasticsearch - Method 2 (Without Retriever)

Add Context

def add_context(question: str):r = es.similarity_search(question)context = "\n".join(x.page_content for x in r)return context

Chain

template = """Answer the question based only on the following context:
{context}Question: {question}
"""prompt = ChatPromptTemplate.from_template(template)chain = ({"context": RunnableLambda(add_context), "question": RunnablePassthrough()}| prompt| ChatOpenAI()| StrOutputParser()
)chain.invoke("canada employees guidelines")

Compare with RAG and without RAG

q = input("Ask Question: ")## Question to OpenAIchat = ChatOpenAI()messages = [HumanMessage(content=q)
]gpt_res = chat(messages)# Question with RAGgpt_rag_res = chain.invoke(q)# Responsess = f"""
ChatGPT Response:{gpt_res}ChatGPT with RAG Response:{gpt_rag_res}
"""print(s)

上面的 jupyter notebook 的代码可以在地址 https://github.com/liu-xiao-guo/semantic_search_es/blob/main/RAG-langchain-elasticsearch.ipynb 下载。

相关文章:

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)

这篇博客是之前文章: Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二&a…...

YOLOv7优化:渐近特征金字塔网络(AFPN)| 助力小目标检测

💡💡💡本文改进:渐近特征金字塔网络(AFPN),解决多尺度削弱了非相邻 Level 的融合效果。 AFPN | 亲测在多个数据集能够实现涨点,尤其在小目标数据集。 收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg.cn/tYI0c ✨✨✨前沿最新计算机顶会复现 🚀🚀🚀…...

J2EE项目部署与发布(Windows版本)

🎬 艳艳耶✌️:个人主页 🔥 个人专栏 :《Spring与Mybatis集成整合》《Vue.js使用》 ⛺️ 越努力 ,越幸运。 1.单机项目的部署 1.1们需要将要进行部署的项目共享到虚拟机中 在部署项目之前,我们先要检查一下…...

使用AWS Lambda函数的最佳实践!

主题 函数代码 函数配置 指标和警报 处理流 安全最佳实践 有关 Lambda 应用程序最佳实践的更多信息,请参阅 Serverless Land 中的 Application design。 函数代码 从核心逻辑中分离 Lambda 处理程序。这样您可以创建更容易进行单元测试的函数。在 Node.js 中…...

【计算机毕设小程序案例】基于SpringBoot的小演员招募小程序

前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 👉IT源码社-SpringBoot优质案例推荐👈 👉IT源码社-小程序优质案例…...

老年少女测试媛入职感想

作为一枚从事通信行业测试的老年少女测试媛,入职离职也有两三次了。现在又在一家企业入职了。虽然心里也清楚离职和入职,无非也就是从一个公司的坑里跳出来,再跳到另外一个公司的坑里罢了,明明知道老东家的坑是填不完的了&#xf…...

StreamSaver.js入门教程:优雅解决前端下载文件的难题

本文简介 点赞 关注 收藏 学会了 本文介绍一个能让前端优雅下载大文件的工具:StreamSaver.js ⚡️ StreamSaver.js GitHub地址⚡️ 官方案例 StreamSaver.js 可用于实现在Web浏览器中直接将大文件流式传输到用户设备的功能。 传统的下载方式可能导致大文件的加…...

element-ui vue2 iframe 嵌入外链新解

效果如图 实现原理 在路由中通过 props 传值 {path: /iframe,component: Layout,meta: { title: 小助手, icon: example },children: [{path: chatglm,name: chatglm,props: { name: chatglm,url: https://chatglm.cn },component: () > import(/views/iframe/common),me…...

win10 + VS2017 编译libjpeg(jpeg-9b)

需要用到的文件: jpeg-9b.zip win32.mak 下载链接链接:https://pan.baidu.com/s/1Z0fwbi74-ZSMjSej-0dV2A 提取码:huhu 步骤1:下载并解压jpeg-9b。 这里把jpeg-9b解压到文件夹"D:\build-libs\jpeg\build\jpeg-9b" …...

如何实现公网远程桌面访问Ubuntu?VNC+cpolar内网穿透!

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…...

SpringMvc接收参数

接受参数:1.路径设置RequestMapping(value"地址",method"请求方式") 类|方法GetMapping PostMapping 方法2.接受参数[重点]param直接接收---handler(类型 形参名) 形参名请求参数名注解指定---handler(RequestParam(name"请求参…...

计算机网络文章荟萃

脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?-网络编程/专项技术区 - 即时通讯开发者社区! 1.什么是 socket - 掘金2.socket 的实现原理 - 掘金本文讲述了 socket 在 linux 操作系统下的数据结构,以及阻塞 IO 利用…...

C# Socket通信从入门到精通(4)——多个异步TCP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(3)——单个异步TCP客户端C#代码实现我介绍了单个异步Tcp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步连接、异步发送、异步接收的操作,那么这时候我们使用之前单个…...

GitHub为自己的仓库(Repository)设置默认代码缩进(tabsize)

无意中发现GitHub默认显示tab为8个空格的大小,十分不适,故想改成四个字节的缩进 流程 GitHub是支持EditorConfig的。所有只需在Repository根目录下(注意不是.git文件夹下)新建文件 .editorconfig vim .editorconfig内容如下 # top-most EditorConfig…...

Tomcat的动静分离

一、动态负载均衡 3、台虚拟机模拟&#xff1a; 代理服务器&#xff1a;51 tomcat动态页面&#xff1a;53,54 关闭防火墙和安全机制 配置代理服务器&#xff0c;由于做的是七层代理&#xff0c;所以要在http模块配置 配置前端页面 <!DOCTYPE html> <html> <…...

Chimera:混合的 RLWE-FHE 方案

参考文献&#xff1a; [HS14] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in Cryptology–CRYPTO 2014, pages 554–571. Springer, 2014.[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib. In Advances in Cryptology–EUROCRYPT 2015, pages 641–6…...

MySQL 连接出现 Authentication plugin ‘caching_sha2_password的处理方法(使用第二种)

出现这个原因是mysql8 之前的版本中加密规则是mysql_native_password,而在mysql8之后,加密规则是caching_sha2_password, 解决问题方法有两种,一种是升级navicat驱动,一种是把mysql用户登录密码加密规则还原成mysql_native_password. 1. 升级MySQL版本 较早的MySQL版本可能不…...

设置Ubuntu 20.04的静态IP地址(wifi模式下)

一、引言 自己家用的Ubuntu的&#xff0c;重启后ip地址经常会改变&#xff0c;这个时候就需要我们手动配置静态IP了。 二、优点 给Ubuntu设置一个静态IP地址有以下几个好处&#xff1a; 持久性&#xff1a;静态IP地址是固定不变的&#xff0c;与设备的MAC地址绑定。这意味着…...

Qt界面实现中英文切换

要实现的效果&#xff0c;是下拉列表切换中文和English实现按钮文本中英文内容切换。 实现步骤&#xff1a; 1.在VS中鼠标对Translation Files文件右击&#xff0c;选择“添加”--->“模块”. 在弹窗的窗口中选择“Qt”--->“Qt Translation File”。 添加Translation_e…...

Python 编写确定个位、十位以上方法及各数位的和程序

Python 编写确定数字位方法 Python 编写确定个位、十位Python 编写确定个位、十位、百位方法解析&#xff1a;Python 各数位的和程序 利用%&#xff08;取余符号&#xff09;、//&#xff08;整除&#xff09;符号。 Python 编写确定个位、十位 num 17 a num % 10 b num /…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

PH热榜 | 2025-06-08

1. Thiings 标语&#xff1a;一套超过1900个免费AI生成的3D图标集合 介绍&#xff1a;Thiings是一个不断扩展的免费AI生成3D图标库&#xff0c;目前已有超过1900个图标。你可以按照主题浏览&#xff0c;生成自己的图标&#xff0c;或者下载整个图标集。所有图标都可以在个人或…...