当前位置: 首页 > news >正文

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)

这篇博客是之前文章:

  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)
  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二)
  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)

的续篇。在这篇文章中,我们将学习如何把从 Elasticsearch 搜索到的结果传递到大数据模型以得到更好的结果。

如果你还没有创建好自己的环境,请参考第一篇文章进行详细地安装。

创建应用并展示

安装包

#!pip3 install langchain

导入包

from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.runnable import RunnableLambda
from langchain.schema import HumanMessage
from urllib.request import urlopen
import os, jsonload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
elastic_index_name='langchain-rag'

添加文档并将文档分成段落

with open('workplace-docs.json') as f:workplace_docs = json.load(f)print(f"Successfully loaded {len(workplace_docs)} documents")

metadata = []
content = []for doc in workplace_docs:content.append(doc["content"])metadata.append({"name": doc["name"],"summary": doc["summary"],"rolePermissions":doc["rolePermissions"]})text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)
docs = text_splitter.create_documents(content, metadatas=metadata)

Index Documents using ELSER - SparseVectorRetrievalStrategy()

from elasticsearch import Elasticsearchurl = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)es = ElasticsearchStore.from_documents(docs,es_url = url,es_connection = connection,es_user=elastic_user,es_password=elastic_password,index_name=elastic_index_name,strategy=ElasticsearchStore.SparseVectorRetrievalStrategy()
)

如果你还没有配置好自己的 ELSER,请参考之前的文章 “ Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)”。

在执行完上面的命令后,我们可以在 Kibana 中进行查看:

展示结果

def showResults(output):print("Total results: ", len(output))for index in range(len(output)):print(output[index])

r = es.similarity_search("work from home policy")
showResults(r)

RAG with Elasticsearch - Method 1 (Using Retriever)

retriever = es.as_retriever(search_kwargs={"k": 4})template = """Answer the question based only on the following context:
{context}Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)chain = ({"context": retriever, "question": RunnablePassthrough()} | prompt | ChatOpenAI() | StrOutputParser()
)chain.invoke("vacation policy")

RAG with Elasticsearch - Method 2 (Without Retriever)

Add Context

def add_context(question: str):r = es.similarity_search(question)context = "\n".join(x.page_content for x in r)return context

Chain

template = """Answer the question based only on the following context:
{context}Question: {question}
"""prompt = ChatPromptTemplate.from_template(template)chain = ({"context": RunnableLambda(add_context), "question": RunnablePassthrough()}| prompt| ChatOpenAI()| StrOutputParser()
)chain.invoke("canada employees guidelines")

Compare with RAG and without RAG

q = input("Ask Question: ")## Question to OpenAIchat = ChatOpenAI()messages = [HumanMessage(content=q)
]gpt_res = chat(messages)# Question with RAGgpt_rag_res = chain.invoke(q)# Responsess = f"""
ChatGPT Response:{gpt_res}ChatGPT with RAG Response:{gpt_rag_res}
"""print(s)

上面的 jupyter notebook 的代码可以在地址 https://github.com/liu-xiao-guo/semantic_search_es/blob/main/RAG-langchain-elasticsearch.ipynb 下载。

相关文章:

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)

这篇博客是之前文章: Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二&a…...

YOLOv7优化:渐近特征金字塔网络(AFPN)| 助力小目标检测

💡💡💡本文改进:渐近特征金字塔网络(AFPN),解决多尺度削弱了非相邻 Level 的融合效果。 AFPN | 亲测在多个数据集能够实现涨点,尤其在小目标数据集。 收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg.cn/tYI0c ✨✨✨前沿最新计算机顶会复现 🚀🚀🚀…...

J2EE项目部署与发布(Windows版本)

🎬 艳艳耶✌️:个人主页 🔥 个人专栏 :《Spring与Mybatis集成整合》《Vue.js使用》 ⛺️ 越努力 ,越幸运。 1.单机项目的部署 1.1们需要将要进行部署的项目共享到虚拟机中 在部署项目之前,我们先要检查一下…...

使用AWS Lambda函数的最佳实践!

主题 函数代码 函数配置 指标和警报 处理流 安全最佳实践 有关 Lambda 应用程序最佳实践的更多信息,请参阅 Serverless Land 中的 Application design。 函数代码 从核心逻辑中分离 Lambda 处理程序。这样您可以创建更容易进行单元测试的函数。在 Node.js 中…...

【计算机毕设小程序案例】基于SpringBoot的小演员招募小程序

前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 👉IT源码社-SpringBoot优质案例推荐👈 👉IT源码社-小程序优质案例…...

老年少女测试媛入职感想

作为一枚从事通信行业测试的老年少女测试媛,入职离职也有两三次了。现在又在一家企业入职了。虽然心里也清楚离职和入职,无非也就是从一个公司的坑里跳出来,再跳到另外一个公司的坑里罢了,明明知道老东家的坑是填不完的了&#xf…...

StreamSaver.js入门教程:优雅解决前端下载文件的难题

本文简介 点赞 关注 收藏 学会了 本文介绍一个能让前端优雅下载大文件的工具:StreamSaver.js ⚡️ StreamSaver.js GitHub地址⚡️ 官方案例 StreamSaver.js 可用于实现在Web浏览器中直接将大文件流式传输到用户设备的功能。 传统的下载方式可能导致大文件的加…...

element-ui vue2 iframe 嵌入外链新解

效果如图 实现原理 在路由中通过 props 传值 {path: /iframe,component: Layout,meta: { title: 小助手, icon: example },children: [{path: chatglm,name: chatglm,props: { name: chatglm,url: https://chatglm.cn },component: () > import(/views/iframe/common),me…...

win10 + VS2017 编译libjpeg(jpeg-9b)

需要用到的文件: jpeg-9b.zip win32.mak 下载链接链接:https://pan.baidu.com/s/1Z0fwbi74-ZSMjSej-0dV2A 提取码:huhu 步骤1:下载并解压jpeg-9b。 这里把jpeg-9b解压到文件夹"D:\build-libs\jpeg\build\jpeg-9b" …...

如何实现公网远程桌面访问Ubuntu?VNC+cpolar内网穿透!

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…...

SpringMvc接收参数

接受参数:1.路径设置RequestMapping(value"地址",method"请求方式") 类|方法GetMapping PostMapping 方法2.接受参数[重点]param直接接收---handler(类型 形参名) 形参名请求参数名注解指定---handler(RequestParam(name"请求参…...

计算机网络文章荟萃

脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?-网络编程/专项技术区 - 即时通讯开发者社区! 1.什么是 socket - 掘金2.socket 的实现原理 - 掘金本文讲述了 socket 在 linux 操作系统下的数据结构,以及阻塞 IO 利用…...

C# Socket通信从入门到精通(4)——多个异步TCP客户端C#代码实现

前言: 在之前的文章C# Socket通信从入门到精通(3)——单个异步TCP客户端C#代码实现我介绍了单个异步Tcp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步连接、异步发送、异步接收的操作,那么这时候我们使用之前单个…...

GitHub为自己的仓库(Repository)设置默认代码缩进(tabsize)

无意中发现GitHub默认显示tab为8个空格的大小,十分不适,故想改成四个字节的缩进 流程 GitHub是支持EditorConfig的。所有只需在Repository根目录下(注意不是.git文件夹下)新建文件 .editorconfig vim .editorconfig内容如下 # top-most EditorConfig…...

Tomcat的动静分离

一、动态负载均衡 3、台虚拟机模拟&#xff1a; 代理服务器&#xff1a;51 tomcat动态页面&#xff1a;53,54 关闭防火墙和安全机制 配置代理服务器&#xff0c;由于做的是七层代理&#xff0c;所以要在http模块配置 配置前端页面 <!DOCTYPE html> <html> <…...

Chimera:混合的 RLWE-FHE 方案

参考文献&#xff1a; [HS14] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in Cryptology–CRYPTO 2014, pages 554–571. Springer, 2014.[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib. In Advances in Cryptology–EUROCRYPT 2015, pages 641–6…...

MySQL 连接出现 Authentication plugin ‘caching_sha2_password的处理方法(使用第二种)

出现这个原因是mysql8 之前的版本中加密规则是mysql_native_password,而在mysql8之后,加密规则是caching_sha2_password, 解决问题方法有两种,一种是升级navicat驱动,一种是把mysql用户登录密码加密规则还原成mysql_native_password. 1. 升级MySQL版本 较早的MySQL版本可能不…...

设置Ubuntu 20.04的静态IP地址(wifi模式下)

一、引言 自己家用的Ubuntu的&#xff0c;重启后ip地址经常会改变&#xff0c;这个时候就需要我们手动配置静态IP了。 二、优点 给Ubuntu设置一个静态IP地址有以下几个好处&#xff1a; 持久性&#xff1a;静态IP地址是固定不变的&#xff0c;与设备的MAC地址绑定。这意味着…...

Qt界面实现中英文切换

要实现的效果&#xff0c;是下拉列表切换中文和English实现按钮文本中英文内容切换。 实现步骤&#xff1a; 1.在VS中鼠标对Translation Files文件右击&#xff0c;选择“添加”--->“模块”. 在弹窗的窗口中选择“Qt”--->“Qt Translation File”。 添加Translation_e…...

Python 编写确定个位、十位以上方法及各数位的和程序

Python 编写确定数字位方法 Python 编写确定个位、十位Python 编写确定个位、十位、百位方法解析&#xff1a;Python 各数位的和程序 利用%&#xff08;取余符号&#xff09;、//&#xff08;整除&#xff09;符号。 Python 编写确定个位、十位 num 17 a num % 10 b num /…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...