Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)
这篇博客是之前文章:
- Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)
- Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二)
-
Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)
的续篇。在这篇文章中,我们将学习如何把从 Elasticsearch 搜索到的结果传递到大数据模型以得到更好的结果。

如果你还没有创建好自己的环境,请参考第一篇文章进行详细地安装。
创建应用并展示
安装包
#!pip3 install langchain
导入包
from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.runnable import RunnableLambda
from langchain.schema import HumanMessage
from urllib.request import urlopen
import os, jsonload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
elastic_index_name='langchain-rag'
添加文档并将文档分成段落
with open('workplace-docs.json') as f:workplace_docs = json.load(f)print(f"Successfully loaded {len(workplace_docs)} documents")

metadata = []
content = []for doc in workplace_docs:content.append(doc["content"])metadata.append({"name": doc["name"],"summary": doc["summary"],"rolePermissions":doc["rolePermissions"]})text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)
docs = text_splitter.create_documents(content, metadatas=metadata)

Index Documents using ELSER - SparseVectorRetrievalStrategy()
from elasticsearch import Elasticsearchurl = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)es = ElasticsearchStore.from_documents(docs,es_url = url,es_connection = connection,es_user=elastic_user,es_password=elastic_password,index_name=elastic_index_name,strategy=ElasticsearchStore.SparseVectorRetrievalStrategy()
)

如果你还没有配置好自己的 ELSER,请参考之前的文章 “ Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)”。
在执行完上面的命令后,我们可以在 Kibana 中进行查看:

展示结果
def showResults(output):print("Total results: ", len(output))for index in range(len(output)):print(output[index])
Search
r = es.similarity_search("work from home policy")
showResults(r)

RAG with Elasticsearch - Method 1 (Using Retriever)
retriever = es.as_retriever(search_kwargs={"k": 4})template = """Answer the question based only on the following context:
{context}Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)chain = ({"context": retriever, "question": RunnablePassthrough()} | prompt | ChatOpenAI() | StrOutputParser()
)chain.invoke("vacation policy")

RAG with Elasticsearch - Method 2 (Without Retriever)
Add Context
def add_context(question: str):r = es.similarity_search(question)context = "\n".join(x.page_content for x in r)return context
Chain
template = """Answer the question based only on the following context:
{context}Question: {question}
"""prompt = ChatPromptTemplate.from_template(template)chain = ({"context": RunnableLambda(add_context), "question": RunnablePassthrough()}| prompt| ChatOpenAI()| StrOutputParser()
)chain.invoke("canada employees guidelines")

Compare with RAG and without RAG
q = input("Ask Question: ")## Question to OpenAIchat = ChatOpenAI()messages = [HumanMessage(content=q)
]gpt_res = chat(messages)# Question with RAGgpt_rag_res = chain.invoke(q)# Responsess = f"""
ChatGPT Response:{gpt_res}ChatGPT with RAG Response:{gpt_rag_res}
"""print(s)


上面的 jupyter notebook 的代码可以在地址 https://github.com/liu-xiao-guo/semantic_search_es/blob/main/RAG-langchain-elasticsearch.ipynb 下载。
相关文章:
Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (四)
这篇博客是之前文章: Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二&a…...
YOLOv7优化:渐近特征金字塔网络(AFPN)| 助力小目标检测
💡💡💡本文改进:渐近特征金字塔网络(AFPN),解决多尺度削弱了非相邻 Level 的融合效果。 AFPN | 亲测在多个数据集能够实现涨点,尤其在小目标数据集。 收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg.cn/tYI0c ✨✨✨前沿最新计算机顶会复现 🚀🚀🚀…...
J2EE项目部署与发布(Windows版本)
🎬 艳艳耶✌️:个人主页 🔥 个人专栏 :《Spring与Mybatis集成整合》《Vue.js使用》 ⛺️ 越努力 ,越幸运。 1.单机项目的部署 1.1们需要将要进行部署的项目共享到虚拟机中 在部署项目之前,我们先要检查一下…...
使用AWS Lambda函数的最佳实践!
主题 函数代码 函数配置 指标和警报 处理流 安全最佳实践 有关 Lambda 应用程序最佳实践的更多信息,请参阅 Serverless Land 中的 Application design。 函数代码 从核心逻辑中分离 Lambda 处理程序。这样您可以创建更容易进行单元测试的函数。在 Node.js 中…...
【计算机毕设小程序案例】基于SpringBoot的小演员招募小程序
前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 👉IT源码社-SpringBoot优质案例推荐👈 👉IT源码社-小程序优质案例…...
老年少女测试媛入职感想
作为一枚从事通信行业测试的老年少女测试媛,入职离职也有两三次了。现在又在一家企业入职了。虽然心里也清楚离职和入职,无非也就是从一个公司的坑里跳出来,再跳到另外一个公司的坑里罢了,明明知道老东家的坑是填不完的了…...
StreamSaver.js入门教程:优雅解决前端下载文件的难题
本文简介 点赞 关注 收藏 学会了 本文介绍一个能让前端优雅下载大文件的工具:StreamSaver.js ⚡️ StreamSaver.js GitHub地址⚡️ 官方案例 StreamSaver.js 可用于实现在Web浏览器中直接将大文件流式传输到用户设备的功能。 传统的下载方式可能导致大文件的加…...
element-ui vue2 iframe 嵌入外链新解
效果如图 实现原理 在路由中通过 props 传值 {path: /iframe,component: Layout,meta: { title: 小助手, icon: example },children: [{path: chatglm,name: chatglm,props: { name: chatglm,url: https://chatglm.cn },component: () > import(/views/iframe/common),me…...
win10 + VS2017 编译libjpeg(jpeg-9b)
需要用到的文件: jpeg-9b.zip win32.mak 下载链接链接:https://pan.baidu.com/s/1Z0fwbi74-ZSMjSej-0dV2A 提取码:huhu 步骤1:下载并解压jpeg-9b。 这里把jpeg-9b解压到文件夹"D:\build-libs\jpeg\build\jpeg-9b" …...
如何实现公网远程桌面访问Ubuntu?VNC+cpolar内网穿透!
文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…...
SpringMvc接收参数
接受参数:1.路径设置RequestMapping(value"地址",method"请求方式") 类|方法GetMapping PostMapping 方法2.接受参数[重点]param直接接收---handler(类型 形参名) 形参名请求参数名注解指定---handler(RequestParam(name"请求参…...
计算机网络文章荟萃
脑残式网络编程入门(二):我们在读写Socket时,究竟在读写什么?-网络编程/专项技术区 - 即时通讯开发者社区! 1.什么是 socket - 掘金2.socket 的实现原理 - 掘金本文讲述了 socket 在 linux 操作系统下的数据结构,以及阻塞 IO 利用…...
C# Socket通信从入门到精通(4)——多个异步TCP客户端C#代码实现
前言: 在之前的文章C# Socket通信从入门到精通(3)——单个异步TCP客户端C#代码实现我介绍了单个异步Tcp客户端的c#代码实现,但是有的时候,我们需要连接多个服务器,并且对于每个服务器,我们都有一些比如异步连接、异步发送、异步接收的操作,那么这时候我们使用之前单个…...
GitHub为自己的仓库(Repository)设置默认代码缩进(tabsize)
无意中发现GitHub默认显示tab为8个空格的大小,十分不适,故想改成四个字节的缩进 流程 GitHub是支持EditorConfig的。所有只需在Repository根目录下(注意不是.git文件夹下)新建文件 .editorconfig vim .editorconfig内容如下 # top-most EditorConfig…...
Tomcat的动静分离
一、动态负载均衡 3、台虚拟机模拟: 代理服务器:51 tomcat动态页面:53,54 关闭防火墙和安全机制 配置代理服务器,由于做的是七层代理,所以要在http模块配置 配置前端页面 <!DOCTYPE html> <html> <…...
Chimera:混合的 RLWE-FHE 方案
参考文献: [HS14] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in Cryptology–CRYPTO 2014, pages 554–571. Springer, 2014.[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib. In Advances in Cryptology–EUROCRYPT 2015, pages 641–6…...
MySQL 连接出现 Authentication plugin ‘caching_sha2_password的处理方法(使用第二种)
出现这个原因是mysql8 之前的版本中加密规则是mysql_native_password,而在mysql8之后,加密规则是caching_sha2_password, 解决问题方法有两种,一种是升级navicat驱动,一种是把mysql用户登录密码加密规则还原成mysql_native_password. 1. 升级MySQL版本 较早的MySQL版本可能不…...
设置Ubuntu 20.04的静态IP地址(wifi模式下)
一、引言 自己家用的Ubuntu的,重启后ip地址经常会改变,这个时候就需要我们手动配置静态IP了。 二、优点 给Ubuntu设置一个静态IP地址有以下几个好处: 持久性:静态IP地址是固定不变的,与设备的MAC地址绑定。这意味着…...
Qt界面实现中英文切换
要实现的效果,是下拉列表切换中文和English实现按钮文本中英文内容切换。 实现步骤: 1.在VS中鼠标对Translation Files文件右击,选择“添加”--->“模块”. 在弹窗的窗口中选择“Qt”--->“Qt Translation File”。 添加Translation_e…...
Python 编写确定个位、十位以上方法及各数位的和程序
Python 编写确定数字位方法 Python 编写确定个位、十位Python 编写确定个位、十位、百位方法解析:Python 各数位的和程序 利用%(取余符号)、//(整除)符号。 Python 编写确定个位、十位 num 17 a num % 10 b num /…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
