当前位置: 首页 > news >正文

OpenCV官方教程中文版 —— 模板匹配

OpenCV官方教程中文版 —— 模板匹配

  • 前言
  • 一、原理
  • 二、OpenCV 中的模板匹配
  • 三、多对象的模板匹配

前言

在本节我们要学习:

  1. 使用模板匹配在一幅图像中查找目标

  2. 函数:cv2.matchTemplate(),cv2.minMaxLoc()

一、原理

模板匹配是用来在一副大图中搜寻查找模版图像位置的方法。OpenCV 为我们提供了函数:cv2.matchTemplate()。和 2D 卷积一样,它也是用模板图像在输入图像(大图)上滑动,并在每一个位置对模板图像和与其对应的输入图像的子区域进行比较。OpenCV 提供了几种不同的比较方法(细节请看文档)。返回的结果是一个灰度图像,每一个像素值表示了此区域与模板的匹配程度。

如果输入图像的大小是(WxH),模板的大小是(wxh),输出的结果的大小就是(W-w+1,H-h+1)。当你得到这幅图之后,就可以使用函数cv2.minMaxLoc() 来找到其中的最小值和最大值的位置了。第一个值为矩形左上角的点(位置),(w,h)为 模板矩形的宽和高。这个矩形就是找到的模板区域了。

二、OpenCV 中的模板匹配

我们这里有一个例子:我们在梅西的照片中搜索梅西的面部。所以我们要制作下面这样一个模板:

在这里插入图片描述
我们会尝试使用不同的比较方法,这样我们就可以比较一下它们的效果了。
在这里插入图片描述

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('ball.png', 0)
img2 = img.copy()
template = cv2.imread('ball_face.png', 0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
for meth in methods:img = img2.copy()
# exec 语句用来执行储存在字符串或文件中的 Python 语句。
# 例如,我们可以在运行时生成一个包含 Python 代码的字符串,然后使用 exec 语句执行这些语句。
# eval 语句用来计算存储在字符串中的有效 Python 表达式method = eval(meth)
# Apply template Matchingres = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 使用不同的比较方法,对结果的解释不同
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimumif method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)cv2.rectangle(img, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.title('Matching Result'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(img, cmap='gray')plt.title('Detected Point'), plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.tight_layout()plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们看到 cv2.TM_CCORR 和 cv2.TM_SQDIFF 的效果不想我们想的那么好。

三、多对象的模板匹配

在前面的部分,我们在图片中搜素梅西的脸,而且梅西只在图片中出现了一次。假如你的目标对象只在图像中出现了很多次怎么办呢?函数cv.imMaxLoc() 只会给出最大值和最小值。此时,我们就要使用阈值了。在下面的例子中我们要经典游戏 Mario 的一张截屏图片中找到其中的硬币。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv2.imread('mario.png')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.png',0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8
#umpy.where(condition[, x, y])
#Return elements, either from x or y, depending on condition.
#If only condition is given, return condition.nonzero().
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
cv2.imwrite('res.png',img_rgb)

结果:
在这里插入图片描述

相关文章:

OpenCV官方教程中文版 —— 模板匹配

OpenCV官方教程中文版 —— 模板匹配 前言一、原理二、OpenCV 中的模板匹配三、多对象的模板匹配 前言 在本节我们要学习: 使用模板匹配在一幅图像中查找目标 函数:cv2.matchTemplate(),cv2.minMaxLoc() 一、原理 模板匹配是用来在一副大…...

如何为3D模型设置自发光材质?

1、自发光贴图的原理 自发光贴图是一种纹理贴图,用于模拟物体自发光的效果。其原理基于光的发射和反射过程。 在真实世界中,物体自发光通常是由于其本身具有能够产生光的属性,如荧光物质、发光材料或光源本身。为了在计算机图形中模拟这种效…...

UI组件库基础

UI组件库 全局组件* 全局注册组件 & 并且使用了require.context 模块化编程 & webpack打包 const install(Vue)>{const contextrequire.context(.,true,/\.vue$/)context.keys().forEach(fileName>{const modulecontext(fileName)Vue.component(module.default.n…...

数据结构与算法之矩阵: Leetcode 48. 旋转矩阵 (Typescript版)

旋转图像 https://leetcode.cn/problems/rotate-image/ 描述 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1 输入&…...

大厂面试题-JVM中的三色标记法是什么?

目录 问题分析 问题答案 问题分析 三色标记法是Java虚拟机(JVM)中垃圾回收算法的一种,主要用来标记内存中存活和需要回收的对象。 它的好处是,可以让JVM不发生或仅短时间发生STW(Stop The World),从而达到清除JVM内存垃圾的目的&#xff…...

Leetcode—121.买卖股票的最佳时机【简单】

2023每日刷题&#xff08;十一&#xff09; Leetcode—17.电话号码的字母组合 枚举法题解 参考自灵茶山艾府 枚举法实现代码 int maxProfit(int* prices, int pricesSize){int i;int max 0;int minPrice prices[0];for(i 1; i < pricesSize; i) {int tmp prices[i] -…...

【云原生】portainer管理多个独立docker服务器

目录 一、portainer简介 二、安装Portainer 1.1 内网环境下&#xff1a; 1.1.1 方式1&#xff1a;命令行运行 1.1.2 方式2&#xff1a;通过compose-file来启动 2.1 配置本地主机&#xff08;node-1&#xff09; 3.1 配置其他主机&#xff08;被node-1管理的节点服务器&…...

Command集合

Command集合 mysql相关命令 查看mysql的状态 sudo netstat -tap | grep mysql 启动mysql sudo service mysql start 停止mysql sudo service mysql stop 重启mysql sudo service mysql restart 指定端口号&#xff0c;客户端连接mysql sudo mysql -h127.0.0.1 -uroot -p red…...

【QT开发(17)】2023-QT 5.14.2实现Android开发

1、简介 搭建Qt For Android开发环境需要安装的软件有&#xff1a; JAVA SDK &#xff08;jdk 有apt install 安装&#xff09; Android SDK Android NDKQT官网的介绍&#xff1a; Different Qt versions depend on different NDK versions, as listed below: Qt versionNDK…...

JVM相关面试题(每日一练)

1. 什么是垃圾回收机制&#xff1f; 垃圾收集 Garbage Collection 通常被称为“GC”&#xff0c;它诞生于1960年 MIT 的 Lisp 语言&#xff0c;经过半个多世纪&#xff0c;目前已经十分成熟了。 jvm 中&#xff0c;程序计数器、虚拟机栈、本地方法栈都是随线程而生随线程而灭&a…...

OpenCV 相机相关函数

一、变换参数矩阵的求解 1. 计算三个二维点对之间的仿射变换矩阵&#xff1a;getAffineTransform() 2. 计算多个二维点对之间的最优放射变换矩阵&#xff08;误差最小准则&#xff09;&#xff1a;estimateRigidTransform();或者findHomography(); 3. 计算四个二维点对之间的…...

微信小程序之投票管理

前言 对于会议管理模块&#xff0c;必不可少的当然就是我们的投票管理&#xff0c;实现真正意义上的无纸化办公&#xff0c;本期博客为大家介绍会议管理模块&#xff0c;包括发布投票及查看各类投票的状态 所用技术点 MyBatis、SpringMVC、VentUI MyBatis和SpringMVC在博客主…...

23种设计模式【创建型模式】详细介绍之【建造者模式】

建造者模式&#xff1a;构建复杂对象的精妙设计 设计模式的分类和应用场景总结建造者模式&#xff1a;构建复杂对象的精妙设计建造者模式的核心思想建造者模式的参与者Java示例&#xff1a;建造者模式 设计模式的分类和应用场景总结 可以查看专栏设计模式&#xff1a;设计模式 …...

[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

MA 均线时最基本的技术指标&#xff0c;也是最简单&#xff0c;最不常用的&#xff08;通常使用EMA、SMA&#xff09;。 以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。 MA 均线指标公式 MA (N)(C1 C2 C3 …C N )/N目录 方式一1.SQL 直接查询均值2.使用 pyp…...

c语言 判断两个文件是否相同

使用strcmp比较&#xff1a; #include <stdio.h> #include <string.h>int Compare(const char * file1, const char* file2) {FILE* f1, * f2;int size1, size2;unsigned char buffer1[1024], buffer2[1024];f1 fopen(file1, "rb");f2 fopen(file2, &…...

【2021集创赛】Arm杯三等奖:基于FPGA的人脸检测SoC设计

本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。 团队介绍 参赛单位&#xff1a;合肥工业大学 队伍名称&#xff1a;芯创之家 指导老师&#xff1a;邓红辉、尹勇生 参赛杯赛&#xff1a;Arm杯 参赛人员&#xff1a;王亮 李嘉燊 金京 获奖情…...

Java电商平台 - API 接口设计之 token、timestamp、sign 具体架构与实现|电商API接口接入

一&#xff1a;token 简介 Token&#xff1a;访问令牌access token, 用于接口中, 用于标识接口调用者的身份、凭证&#xff0c;减少用户名和密码的传输次数。一般情况下客户端(接口调用方)需要先向服务器端申请一个接口调用的账号&#xff0c;服务器会给出一个appId和一个key, …...

【带头学C++】----- 1.基础知识 ---- 1.23 运算符概述

1.23 运算符概述 运算符&#xff0c;在数学中常见的加减乘除之类的符号&#xff0c;那么在C在编程语言中呢&#xff0c;将使用特定的符号或标记对操作数进行操作以生成结果。用算术运算符将运算对象(也称操作数)连接起来的、符合C 语法规则的式子&#xff0c;称为C 算术表达式运…...

python爬虫分析基于python图书馆书目推荐数据分析与可视化

收藏关注不迷路 文章目录 前言一、项目介绍二、开发环境三、功能介绍四、核心代码五、效果图六、文章目录 前言 随着电子技术的普及和快速发展&#xff0c;线上管理系统被广泛的使用&#xff0c;有很多商业机构都在实现电子信息化管理&#xff0c;图书推荐也不例外&#xff0c…...

Java零基础入门-关系运算符

前言 Java作为一门广受欢迎的开发语言&#xff0c;其在企业级应用和移动应用开发中有着广泛的应用。如果你是一个Java零基础的初学者&#xff0c;那么你来到了一个正确的地方。在本篇文章中&#xff0c;我们会详细介绍Java中的关系运算符&#xff0c;帮助你快速入门。 摘要 …...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...