深度学习中的epoch, batch 和 iteration
| 名词 | 定义 |
|---|---|
| epoch | 使用训练集的全部数据进行一次完整的训练,称为“一代训练” |
| batch | 使用训练集中的一小部分样本对模型权重进行一次反向传播的参数更新,这样的一部分样本称为:“一批数据” |
| iteration | 使用一个batch的数据对模型进行一次参数更新的过程,称为“一次训练” |
epoch:所有的训练样本都在神经网络中进行了一次正向传播和一次反向传播。然而,当一个epoch的样本数量可能过于庞大,就需要把它分成多个小块,也就是分成多个batch来进行训练。
batch(批,一批样本):将训练样本分成若干个batch
batch_size(批大小):每批样本的大小
iteration(一次迭代):训练一个Batch就是一次Iteration
换算关系:
N u m b e r o f B a t c h e s = T r a i n i n g S e t S i z e B a t c h S i z e Number of Batches = \dfrac{Training Set Size}{Batch Size} NumberofBatches=BatchSizeTrainingSetSize
实际上,梯度下降的几种方式的根本区别就在于上面公式中的Bathch_Size 不同,
| 梯度下降方式 | 训练集大小 | batch_size | number of batchs |
|---|---|---|---|
| BGD(批量梯度下降) | N | N | 1 |
| SGD(随机梯度下降) | N | 1 | N |
| MBGD(小批量梯度下降) | N | B | N/B+1 |
举个例子:
mnist 数据集有60000张图片作为训练数据,10000张图片作为测试数据。假设现在选择 ==Batch_Size =100 ==对模型进行训练。迭代30000次。
- 每个 Epoch 要训练的图片数量:60000(训练集上的所有图像)
- 训练集具有的 Batch 个数:600=60000/100
- 每个 Epoch 需要完成的 Batch 个数:600
- 每个 Epoch 具有的 Iteration 个数:600(完成一个- Batch训练,相当于参数迭代一次)
- 每个 Epoch 中发生模型权重更新的次数:600
- 训练 10 个Epoch后,模型权重更新的次数:6000=600*10
- 不同Epoch的训练,其实用的是同一个训练集的数据。第1个Epoch和第10个Epoch虽然用的都是训练集的图片,但是对模型的- 权重更新值却是完全不同的。因为不同Epoch的模型处于代价函数空间上的不同位置,模型的训练代越靠后,越接近谷底,其代价越小。
- 总共完成30000次迭代,相当于完成了30000/600=50 个 Epoch
相关文章:
深度学习中的epoch, batch 和 iteration
名词定义epoch使用训练集的全部数据进行一次完整的训练,称为“一代训练”batch使用训练集中的一小部分样本对模型权重进行一次反向传播的参数更新,这样的一部分样本称为:“一批数据”iteration使用一个batch的数据对模型进行一次参数更新的过…...
unity开发安卓视频文件适配手机和平板
using UnityEngine; using UnityEngine.UI;public class VideoResize : MonoBehaviour {private RawImage rawImage;private VideoPlayer videoPlayer;private void Start(){rawImage GetComponent<RawImage();videoPlayer GetComponent<VideoPlayer>();// 播放视频…...
NLP之RNN的原理讲解(python示例)
目录 代码示例代码解读知识点介绍 代码示例 import numpy as np import tensorflow as tf from tensorflow.keras.layers import SimpleRNNCell# 第t时刻要训练的数据 xt tf.Variable(np.random.randint(2, 3, size[1, 1]), dtypetf.float32) print(xt) # https://www.cnblog…...
yo!这里是进程间通信
目录 前言 进程间通信简介 目的 分类 匿名通道 介绍 举例(进程池) 命名管道 介绍 举例 共享内存 介绍 共享内存函数 1.shmget 2.shmat 3.shmdt 4.shmctl 举例 1.框架 2.通信逻辑 消息队列 信号量 同步与互斥 理解信号量 后记…...
使用docker安装MySQL,Redis,Nacos,Consul教程
文章目录 安装MySQL安装Redis安装Nacos安装Consul 如未安装docker,参考教程: https://blog.csdn.net/m0_63230155/article/details/134090090 安装MySQL #拉取镜像 sudo docker pull mysql:latestsudo docker run --name mysql \-p 3306:3306 \-e MYSQ…...
python和Springboot如何交互?
Python和Spring Boot可以通过RESTful API进行交互。Spring Boot通常用于后端开发,提供了快速构建RESTful API的工具,而Python则可以用于编写前端或与后端交互的代码。 要实现Python和Spring Boot的交互,可以按照以下步骤进行: 在…...
Qt实现json解析
前提要点 json文件,可通过键值的方式存储你所需要的数据,斌且支持多种类型存储,类似于一种结构化的数据库,在读取json文件时可通过相对应的关键字精准获取。他是一种树状结构,我们可以自己设定叶子的数量以及他所代表…...
Ajax、Json深入浅出,及原生Ajax及简化版Ajax
Ajax 1.路径介绍 1.1 JavaWeb中的路径 在JavaWeb中,路径分为相对路径和绝对路径两种: 相对路径: ./ 表示当前目录(可省略) ../ 表示当前文件所在目录的上一级目录 绝对路径: http://ip:port/工程名/资源路径 2.2 在JavaWeb中…...
前端第一阶段测试
前端第一阶段测试 选择问答 如果觉得有用请给我点个赞⑧~ 选择 1、【单选】下列哪个是子代选择器 A A、p>b B、p b C、pb D、p.b 2、【单选】下述有关css属性position的属性值的描述,说法错误的是?B A、static:没有定位,元素出…...
openlayers+vue的bug
使用addInteraction添加交互draw绘制,预期removeInteraction删除交互draw绘制时不再绘制,但是删除绘制不起作用,各种找原因,结果把data中的map变量注释掉即可,原因未知。 <template><div><div id"…...
实时数仓-Hologres介绍与架构
本文是向大家介绍Hologres是一款实时HSAP产品,隶属阿里自研大数据品牌MaxCompute,兼容 PostgreSQL 生态、支持MaxCompute数据直接查询,支持实时写入实时查询,实时离线联邦分析,低成本、高时效、快速构筑企业实时数据仓…...
asp.net教务管理信息系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio计算机毕业设计
一、源码特点 asp.net 教务管理信息系统是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c#语言 开发 asp.net教务管理系统 应用技术&a…...
爬虫、数据清洗和分析
爬虫、数据清洗和分析是在数据科学、数据挖掘和网络爬虫开发领域中常见的概念。 爬虫(Web Scraping):爬虫是一种自动化程序或脚本,用于从互联网上的网站上提取信息。这些信息可以是文本、图像、视频或其他类型的数据。爬虫通常会…...
SpringBoot | SpringBoot中实现“微信支付“
SpringBoot中实现"微信支付": 1.“微信支付”产品2."微信支付"接入流程3.“微信小程序支付”时序图:3.1 “商家端JSAPI下单” 接口3.2 “微信小程序端调起支付” 接口 4.微信支付准备工作:4.1 获得微信支付平台证书、商户私钥文件4…...
基于SSM和VUE的留守儿童信息管理系统
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…...
VMware 16开启虚拟机电脑就蓝屏W11解决方法
问题现象 解决方法 控制面板->程序->启用或关闭windows功能->勾选虚拟机平台->重启...
【Bug——VMware Workstation】虚拟机桥接网络没有 VMnet0
此时 没有VMnet0用来桥接网络。 接下来进行解决 1.找到安装VM的路径,在安装的目录里面找到如图所示的三个文件: 2.依次点击鼠标右键 将这三个文件依次安装如图所示: 二.windows下的操作 1.首先 找到电脑的控制面板->网络和internet->…...
centos中安装Mysql8.0
其实和mysql5.7的安装差不多 1.root用户 2.更新密钥 rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022 3.安装mysql yum库 rpm -Uvh https://dev.mysql.com/ get/mysql80-community-release-el7-2.noarch.rpm 4.通过上两步,我们就可以使用yum去安装…...
简化对象和函数写法
简化对象写法: 传统写法: var x 10, y 20; var obj {x: x, y: y};简化写法: var x 10, y 20; var obj {x, y};简化函数写法: 传统写法: function add(x, y) {return x y; }简化写法: var add …...
GB/T28181流媒体相关协议详解
GB/T28181流媒体相关协议详解 文章目录 GB/T28181流媒体相关协议详解1 GB/T28181协议中使用的应用层协议介绍2 实时视频点播协议交互流程2.1 设备注册2.2 设备保活2.3 视频播放 总结 本文主要主要针对28181协议中视频流的部分,来阐述视频流通过28181协议如何进行视频…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
