我会在以下情况用到GPT
ChatGPT可以在各种情况下派上用场,包括但不限于以下情况:
-
获取信息:你可以使用ChatGPT来获取关于各种主题的信息,例如历史事件、科学知识、文化背景等。ChatGPT可以用作一个知识库,回答你的问题。
-
学习新知识:如果你有疑问,想要深入了解某个主题,可以向ChatGPT提问,以获取详细解释和背景信息。
-
写作支持:ChatGPT可以用作写作工具,协助你撰写文章、报告、作文,提供建议、纠正语法和拼写错误等。
-
编程帮助:如果你是程序员,你可以向ChatGPT提出编程问题,获得关于代码编写、错误调试等方面的建议。
-
创意激发:ChatGPT可以用作创意的灵感来源。你可以向它提出问题,以获取创意、故事情节、艺术灵感等。
-
语言翻译:ChatGPT可以帮助你进行语言翻译,尤其是对于日常用语、简单句子的翻译。
-
辅助决策:在做决策时,你可以咨询ChatGPT的意见或要求它提供关于某个问题的不同角度。
-
解答疑惑:如果你有各种疑虑、难题或担忧,你可以与ChatGPT进行交流,让它提供建议和见解。
-
虚拟助手:ChatGPT还可以被集成为虚拟助手,用于回答常见问题、提供客户支持等。
ChatGPT虽然功能强大,但也有一些限制,特别是在处理敏感主题和事实核查方面。在使用ChatGPT时,要谨慎验证其提供的信息,并在必要时进行交叉检查。
相关文章:
我会在以下情况用到GPT
ChatGPT可以在各种情况下派上用场,包括但不限于以下情况: 获取信息:你可以使用ChatGPT来获取关于各种主题的信息,例如历史事件、科学知识、文化背景等。ChatGPT可以用作一个知识库,回答你的问题。 学习新知识…...

33:深入浅出x86中断机制
背景 我们知道使用0x10号中断,可以在屏幕上打印一个字符。 问题 系统中的 中断 究竟是什么? 生活中的例子 来看一个生活中例子: 小狄的工作方式 在处理紧急事务的时候,不回应同事的技术求助。老板的召唤必须回应,…...
docker docker-compose安装(centos7)
docker安装 1.卸载旧版 卸载旧版 yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine2.安装一个yum工具 yum install -y yum-utils3.配置docker的yum源 yum-config-manager -…...
Dockerfile文件详细教程
写在前面 Dockerfile是用来构建镜像的,他实际上就是把在linux下的命令操作写到了Dockerfile中,通过Dockerfile去执行设置好的操作命令,保证通过Dockerfile的构建镜像是一致的。 实战分析 该例子来自于 chromium 项目 主要干的事情…...

机器学习-模型评估与选择
文章目录 评估方法留出法交叉验证自助法 性能的衡量回归问题分类问题查准率、查全率与F1ROC与AUC 在机器学习中,我们通常面临两个主要问题:欠拟合和过拟合。欠拟合指模型无法在训练数据上获得足够低的误差,通常是因为模型太简单,无…...
分享一下办公自动化常用的思想
目录 网页获取数据需求①大体思路:PythonseleniumXpath 网页获取数据需求②大体思路:requests爬虫 批量生成需求①文件的移动、重命名②word、Excel批量生成 匹配需求 网页获取数据需求① 大体思路:PythonseleniumXpath 我们在利用Python做…...

mac vscode 使用 clangd
C 的智能提示 IntelliSense 非常不准,我们可以使用 clangd clangd 缺点就是配置繁琐,优点就是跳转和提示代码精准 开启 clangd 之后会提示你关闭 IntelliSense 1、安装插件 clangd 搜索第一个下载多的就是 2、配置 clangd 可执行程序路径 clangd 插…...

DSI及DPHY的学习
DSI的物理层PHY只能是DPHY 本节讲述的DSI是V1.02.00---2010.6.28 从DSI V1.02开始DSI支持图像数据包RGB和YCbCr的传输,在此版本之前只支持RGB传输。 本节内容与CSICDPHY相同时 请参考: CSI2与CDPHY学习-CSDN博客 同时本节会做一些与CSICDPHY的比较 …...

环形链表(C++解法)
题目 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&#…...

星闪技术 NearLink 一种专门用于短距离数据传输的新型无线通信技术
本心、输入输出、结果 文章目录 星闪技术 NearLink 一种专门用于短距离数据传输的新型无线通信技术前言星闪技术 NearLink 的诞生背景星闪技术 NearLink 简介星闪技术 NearLink 技术是一种蓝牙技术吗星闪技术 NearLink 优势星闪技术 NearLink 应用前景弘扬爱国精神星闪技术 Nea…...
【Python机器学习】零基础掌握RandomForestRegressor集成学习
如何预测房价是不是一直困扰着大家?特别是在房地产市场波动不定的情况下,这样的预测可以说是切实需要。 要解决这个问题,一个可行的方法是利用历史房价数据和房屋的各种属性(如面积、楼层、地理位置等)进行分析。通过这些数据,可以用一个模型来预测未来房价。 假设有以…...

FreeRTOS深入教程(任务创建的深入和任务调度机制分析)
文章目录 前言一、深入理解任务的创建二、任务的调度机制1.FreeRTOS中任务调度的策略2.FreeRTOS任务调度策略实现的核心3.FreeRTOS内部链表源码解析4.如何通过就绪链表管理任务的执行顺序 三、一个任务能够运行多久1.高优先级任务可抢占低优先级任务一直运行2.相同优先级的任务…...

Megatron-LM GPT 源码分析(一) Tensor Parallel分析
引言 本文基于开源代码 GitHub - NVIDIA/Megatron-LM: Ongoing research training transformer models at scale ,通过GPT的模型运行示例,从三个维度 - 模型结构、代码运行、代码逻辑说明 对其源码做深入的分析。 Tensor Parallel源码分析...

分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测
分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测 目录 分类预测 | MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元数据…...

婚礼的魅力
昨日有幸被邀请去当伴郎,虽然是替补,即别人鸽了,过去救急,但总归是去起作用。 婚礼的魅力,感受到了,满满的仪式感,紧凑的流程,还有不断的拍照,做视频,留下美好…...

【计算机网络笔记】DNS报文格式
DNS 提供域名到主机IP地址的映射 域名服务的三大要素: 域(Domain)和域名(Domain name): 域指由地 理位置或业务类型而联系在一起的一组计算机构 成。 主机:由域名来标识。域名是由字符和(或&a…...

10月28日
...

【性能测试】初识 Jmeter 中的 BeanShell
初识 Jmeter 中的 BeanShell 1.简介1.1 应用场景1.2 BeanShell 类型 2.常用内置变量2.1 log 日志模块2.2 vars 模块2.3 props 模块2.4 prev 模块 3.常见应用场景3.1 Java 文件处理3.2 导入外部 jar 包 BeanShell 是一个小型嵌入式 Java 源代码解释器,完全兼容 Java …...
Rust实现基于Tokio的限制内存占用的channel
Rust实现基于Tokio的限制内存占用的channel 简介 本文介绍如何基于tokio的channel实现一个限制内存占用的channel。 Tokio提供了多种协程间同步的接口,用于在不同的协程中同步数据。 常用的channel有两种:bounded和unbounded,其中ubbounded的channel可…...

【C++】C++入门(上)--命名空间 输入输出 缺省参数 函数重载
目录 一 命名空间 1 命名空间的定义 2 命名空间的使用 二 C输入和输出 1 输出 2 输入 三 缺省参数 1 缺省参数概念 2 缺省参数分类 (1) 全缺省参数 (2)半缺省参数 四 函数重载 1 函数重载概念 2 分类 1 参数类型不同 2 参数个数不同 3 参数类型顺序不同 3 C为什…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》
近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...
统计学(第8版)——统计抽样学习笔记(考试用)
一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征(均值、比率、总量)控制抽样误差与非抽样误差 解决的核心问题 在成本约束下,用少量样本准确推断总体特征量化估计结果的可靠性(置…...

RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程. 本…...
Shell 解释器 bash 和 dash 区别
bash 和 dash 都是 Unix/Linux 系统中的 Shell 解释器,但它们在功能、语法和性能上有显著区别。以下是它们的详细对比: 1. 基本区别 特性bash (Bourne-Again SHell)dash (Debian Almquist SHell)来源G…...