当前位置: 首页 > news >正文

LeetCode 779. 第K个语法符号【递归,找规律,位运算】中等

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

我们构建了一个包含 n 行( 索引从 1  开始 )的表。首先在第一行我们写上一个 0。接下来的每一行,将前一行中的0替换为011替换为10

  • 例如,对于 n = 3 ,第 1 行是 0 ,第 2 行是 01 ,第3行是 0110 。

给定行数 n 和序数 k,返回第 n 行中第 k 个字符。( k 从索引 1 开始

示例 1:

输入: n = 1, k = 1
输出: 0
解释: 第一行:0

示例 2:

输入: n = 2, k = 1
输出: 0
解释:
第一行: 0 
第二行: 01

示例 3:

输入: n = 2, k = 2
输出: 1
解释:
第一行: 0
第二行: 01

提示:

  • 1 <= n <= 30
  • 1 <= k <= 2^n - 1

解法 递归

首先题目给出一个 n n n 行的表(索引从 1 1 1 开始)。并给出表的构造规则为:第一行仅有一个 0 0 0,然后接下来的每一行可以由上一行中 0 0 0 替换为 01 01 01 1 1 1 替换为 10 10 10 来生成。

  • 比如当 n = 3 n = 3 n=3 时,第 1 1 1 行是 0 0 0,第 2 2 2 行是 01 01 01,第 3 3 3 行是 0110 0110 0110

现在要求表第 n n n 行中第 k k k 个数字, 1 ≤ k ≤ 2 n 1 \le k \le 2 ^ n 1k2n 。首先我们可以看到第 i i i 行中会有 2 i − 1 2^{i-1} 2i1 个数字, 1 ≤ i ≤ n 1 \le i \le n 1in ,且其中第 j j j 个数字按照构造规则会生第 i + 1 i + 1 i+1 行中的第 2 ∗ j − 1 2*j - 1 2j1 2 ∗ j 2∗j 2j 个数字, 1 ≤ j ≤ 2 i − 1 1 \le j \le 2^{i-1} 1j2i1

即对于第 i + 1 i + 1 i+1 行中的第 x x x 个数字 num 1 \textit{num}_1 num1 1 ≤ x ≤ 2 i 1 \le x \le 2^i 1x2i ,会被第 i i i 行中第 ⌊ x + 1 2 ⌋ \lfloor \frac{x + 1}{2} \rfloor 2x+1 个数字 num 2 \textit{num}_2 num2 生成。且满足规则:

  • num 2 = 0 \textit{num}_2 = 0 num2=0 ​时, num 2 \textit{num}_2 num2 会生成 01 01 01
    num 1 = { 0 , x ≡ 1 ( m o d 2 ) 1 , x ≡ 0 ( m o d 2 ) \textit{num}_1 = \begin{cases} 0, & x \equiv 1 \pmod{2} \\ 1, & x \equiv 0 \pmod{2} \\ \end{cases} num1={0,1,x1(mod2)x0(mod2)
  • n u m 2 = 1 num_2 = 1 num2=1 时, num 2 \textit{num}_2 num2 会生成 10 10 10
    num 1 = { 1 , x ≡ 1 ( m o d 2 ) 0 , x ≡ 0 ( m o d 2 ) \textit{num}_1 = \begin{cases} 1, & x \equiv 1 \pmod{2} \\ 0, & x \equiv 0 \pmod{2} \\ \end{cases} num1={1,0,x1(mod2)x0(mod2)

并且进一步总结我们可以得到: num 1 = ( x & 1 ) ⊕ 1 ⊕ num 2 \textit{num}_1 = (x \And 1) \oplus 1 \oplus \textit{num}_2 num1=(x&1)1num2 ,其中 & \And & 为「与」运算符, ⊕ \oplus 为「异或」运算符。那么我们从第 n n n 不断往上递归求解,并且当在第一行时只有一个数字,直接返回 0 0 0 即可。

class Solution {
public:int kthGrammar(int n, int k) {if (n == 1) return 0;return (k & 1) ^ 1 ^ kthGrammar(n - 1, (k + 1) / 2);}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 为题目给定表的行数,递归深度为 n n n
  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 为题目给定表的行数,主要为递归的空间开销。

解法2 找规律 + 递归

按照方法一,我们可以尝试写表中的前几行:

  • 0 0 0
  • 01 01 01
  • 0110 0110 0110
  • 01101001 0110 1001 01101001
  • ⋯ \cdots

我们可以注意到规律:每一行的后半部分正好为前半部分的“翻转”——前半部分是 0 0 0 后半部分变为 1 1 1,前半部分是 1 1 1,后半部分变为 0 0 0。且每一行的前半部分和上一行相同。我们可以通过「数学归纳法」来进行证明。

有了这个性质,那么我们再次思考原问题:对于查询某一个行第 k k k 个数字,如果 k k k 在后半部分,那么原问题就可以转化为求解该行前半部分的对应位置的“翻转”数字,又因为该行前半部分与上一行相同,所以又转化为上一行对应对应的“翻转”数字。那么按照这样一直递归下去,并在第一行时返回数字 0 0 0 即可。

class Solution {
public:int kthGrammar(int n, int k) {if (k == 1) return 0;// 查询某一个行第k数,如果k在后半部分,可转化为求解该行前半部分对应位置的翻转数字if (k > (1 << (n - 2))) return 1 ^ kthGrammar(n - 1, k - (1 << (n - 2)));return kthGrammar(n - 1, k); // 一行前半部分和上一行相同}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 为题目给定表的行数。
  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 为题目给定表的行数,主要为递归的空间开销。

解法3 找规律 + 位运算

在「方法二」的基础上,我们来进行优化,本质上我们其实只需要求在过程中的“翻转”总次数,如果“翻转”为偶数次则原问题求解为 0 0 0 ,否则为 1 1 1

首先我们修改行列的索引从 0 0 0 开始,此时原先第 p p p 行的索引现在为 p − 1 p - 1 p1 行,第 i i i 行有 2 i 2 ^ i 2i 位。那么对于某一行 i i i 中下标为 x x x 的数字,如果 x < 2 i − 1 x < 2^{i - 1} x<2i1 那么等价于求 i − 1 i - 1 i1 行中下标为 x x x 的数字,否则 x x x 的二进制位的从右往左第 i i i 位(从第 0 0 0 位开始)为 1 1 1 ,此时需要减去该位(“翻转”一次),然后递归求解即可。所以我们可以看到最后“翻转”的总次数只和初始状态下的下标 x x x 二进制表示中 1 1 1 的个数有关。

因此原问题中求“翻转”的总次数,就等价于求 k − 1 k - 1 k1 的二进制表示中 1 1 1 的个数

class Solution {
public:int kthGrammar(int n, int k) {// return __builtin_popcount(k - 1) & 1;k--;int res = 0;while (k > 0) {k &= k - 1;res ^= 1;}return res;}
};

复杂度分析:

  • 时间复杂度: O ( log ⁡ k ) O(\log k) O(logk) ,其中 k k k 为题目给定查询的下标。
  • 空间复杂度: O ( 1 ) O(1) O(1) ,仅使用常量变量。

相关文章:

LeetCode 779. 第K个语法符号【递归,找规律,位运算】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

java try throw exception finally 遇上 return break continue造成异常丢失

如下所示&#xff0c;是一个java笔试题&#xff0c;考察的是抛出异常之后&#xff0c;程序运行结果&#xff0c;但是这里抛出异常&#xff0c;并没有捕获异常&#xff0c;而是通过finally来进行了流程控制处理。 package com.xxx.test;public class ExceptionFlow {public sta…...

设计模式——装饰器模式(Decorator Pattern)+ Spring相关源码

文章目录 一、装饰器模式的定义二、个人理解举个抽象的例&#xff08;可能并不是很贴切&#xff09; 三、例子1、菜鸟教程例子1.1、定义对象1.2、定义装饰器 3、JDK源码 ——包装类4、JDK源码 —— IO、OutputStreamWriter5、Spring源码 —— BeanWrapperImpl5、SpringMVC源码 …...

MATLAB R2018b详细安装教程(附资源)

云盘链接&#xff1a; pan.baidu.com/s/1SsfNtlG96umfXdhaEOPT1g 提取码&#xff1a;1024 大小&#xff1a;11.77GB 安装环境&#xff1a;Win10/Win8/Win7 安装步骤&#xff1a; 1.鼠标右击【R2018b(64bit)】压缩包选择【解压到 R2018b(64bit)】 2.打开解压后的文件夹中的…...

GEE错误——影像加载过程中出现的图层无法展示的解决方案

问题&#xff1a; // I dont know if some standard value exists for the radius, in the same, I will assume that some software would prefer to use square shape, but circle makes more sense to me. // pixels is noice if you want to zoom in and out to visualize…...

读图数据库实战笔记03_遍历

1. Gremlin Server只将数据存储在内存中 1.1. 如果停止Gremlin Server&#xff0c;将丢失数据库里的所有数据 2. 概念 2.1. 遍历&#xff08;动词&#xff09; 2.1.1. 当在图数据库中导航时&#xff0c;从顶点到边或从边到顶点的移动过程 2.1.2. 类似于在关系数据库中的查…...

QT如何检测当前系统是是Windows还是Uninx或Mac?以及是哪个版本?

简介 通过Qt获取当前系统及版本号&#xff0c;需要用到QSysInfo。 QSysInfo类提供有关系统的信息。 WordSize指定了应用程序编译所在的平台的指针大小。 ByteOrder指定了平台是大端序还是小端序。 某些常量仅在特定的平台上定义。您可以使用预处理器符号Q_OS_WIN和Q_OS_MACOS来…...

Maven配置阿里云中央仓库settings.xml

Maven配置阿里云settings.xml 前言一、阿里云settings.xml二、使用步骤1.任意目录创建settings.xml2.使用阿里云仓库 总结 前言 国内网络从maven中央仓库下载文件通常是比较慢的&#xff0c;所以建议配置阿里云代理镜像以提高jar包下载速度&#xff0c;IDEA中我们需要配置自己…...

由浅入深C系列八:如何高效使用和处理Json格式的数据

如何高效使用和处理JSON格式的数据 问题引入关于CJSON示例代码头文件引用处理数据 问题引入 最近的项目在用c处理后台的数据时&#xff0c;因为好多外部接口都在使用Json格式作为返回的数据结构和数据描述&#xff0c;如何在c中高效使用和处理Json格式的数据就成为了必须要解决…...

多媒体应用设计师 第16章 多媒体应用系统的设计和实现示例

口诀 思维导图 2020...

golang平滑重启库overseer实现原理

overseer主要完成了三部分功能&#xff1a; 1、连接的无损关闭&#xff0c;2、连接的平滑重启&#xff0c;3、文件变更的自动重启。 下面依次讲一下&#xff1a; 一、连接的无损关闭 golang官方的net包是不支持连接的无损关闭的&#xff0c;当主监听协程退出时&#xff0c;…...

用Python定义一个函数,用递归的方式模拟汉诺塔问题

【任务需求】 定义一个函数&#xff0c;用递归的方式模拟汉诺塔问题&#xff0c;三个柱子&#xff0c;分别为A、B、C&#xff0c;其中A柱子上有N个盘子&#xff0c;从小到大编号为1到N&#xff0c;盘子大小不同。现在要将这N个盘子从A柱子移动到C柱子上&#xff0c;但移动的过…...

二手的需求

案例1030 某天项目经理小王&#xff0c;从用户现场带回了需求&#xff0c;以图形的方式&#xff0c;交给了产品经理。告诉他就照这样设计&#xff0c;结果是项目经理放弃让产品经理出效果图。 原因是产品经理觉得项目经理带回来的需求有问题。项目经理解释产品经理不接受&…...

大厂面试题-JVM为什么使用元空间替换了永久代?

目录 面试解析 问题答案 面试解析 我们都知道Java8以及以后的版本中&#xff0c;JVM运行时数据区的结构都在慢慢调整和优化。但实际上这些变化&#xff0c;对于业务开发的小伙伴来说&#xff0c;没有任何影响。 因此我可以说&#xff0c;99%的人都回答不出这个问题。 但是…...

基本微信小程序的驾校宝典系统-驾照考试系统

项目介绍 系统模块分析是对系统的各个模块做出相应的说明以及解释。此系统的模块分别有用户模块、服务端模块和管理端模块这两大基本模块&#xff0c;其中服务端模块包括了首页、教练信息、教练咨讯、考试预约、我的等&#xff1b;而管理端模块则包括了个人中心、用户管理、教…...

02、SpringCloud -- Redis和Cookie过期时间刷新功能

目录 需求:代码流程过滤器类工具类过滤判断远程调用feign接口gitee 配置接口实现过滤器run方法测试:问题:秒杀功能完整分析图 需求: cookie应该写在网关中,网关中可以自定义filter过滤器,用来实现cookie的刷新和redis中key的刷新,延长用户的操作时间。 就是让用户每操…...

【报错】kali安装ngrok报错解决办法(zsh: exec format error: ./ngrok)

问题描述 kali安装ngrok令牌授权失败 在安装配置文件的时候报错&#xff1a;zsh: exec format error: ./ngrok 原因分析&#xff1a; 在Kali Linux上执行./ngrok时出现zsh exec格式错误的问题可能是由于未安装正确版本的ngrok或操作系统不兼容ngrok导致的。以下是一些可能的解…...

<学习笔记>从零开始自学Python-之-常用库篇(十三)内置小型数据库shelve

一、shelve简介&#xff1a; shelve是Python当中数据储存的方案&#xff0c;类似key-value数据库&#xff0c;便于保存Python对象&#xff0c;shelve只有一个open&#xff08;&#xff09;函数&#xff0c;用来打开指定的文件&#xff08;字典&#xff09;&#xff0c;会返回一…...

Redis快速上手篇七(集群-六台虚拟机)

Redis集群 主从复制的场景无法吗满足主机单点故障时需要引入集群配置 一般数据库要处理的读请求远大于写请求 &#xff0c;针对这种情况&#xff0c;我们优化数据库可以采用读写分离的策略。我们可以部 署一台主服务器主要用来处理写请求&#xff0c;部署多台从服务器 &#…...

LeetCode 301. 删除无效的括号【字符串,回溯或BFS】困难

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

Python的__call__ 方法

在 Python 中&#xff0c;__call__ 是一个特殊的魔术方法&#xff08;magic method&#xff09;&#xff0c;它允许一个类的实例像函数一样被调用。当你在一个对象后面加上 () 并执行时&#xff08;例如 obj()&#xff09;&#xff0c;Python 会自动调用该对象的 __call__ 方法…...

Java设计模式:责任链模式

一、什么是责任链模式&#xff1f; 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09; 是一种 行为型设计模式&#xff0c;它通过将请求沿着一条处理链传递&#xff0c;直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者&#xff0c;…...

AT模式下的全局锁冲突如何解决?

一、全局锁冲突解决方案 1. 业务层重试机制&#xff08;推荐方案&#xff09; Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减&#xff08;自动加全…...