SCNet:自校正卷积网络(附代码)
论文地址:https://mftp.mmcheng.net/Papers/20cvprSCNet.pdf
代码地址:https://github.com/MCG-NKU/SCNet
1.是什么?
SCNet是一种卷积神经网络,它使用自校准卷积(Self-Calibrated Convolutions)来增强子任务之间的关系,包括分类、检测和分割。不同于标准卷积采用小尺寸核同时融合空域与通道信息,所设计的SCConv可以通过自矫正操作自适应构建long-range空域与通道间相关性。SCConv的这种特性可以帮助CNN生成更具判别能力的特征表达,因其具有更丰富的信息。作者所设计的SCConv极为简单且通用,可以轻易嵌入到现有CNN架构中,而不会导致参数量增加与计算复杂度提升。
2.为什么?
传统卷积:存在输入x,卷积核k,输出z,则传统卷积操作的公式:

存在的问题;提取到的特征图没有很强的区分性
1. 每个输出的特征图都是通过所有通道求和来计算的,所有的特征图都是通过重复同一公式得到。
2. 每个空间位置的感受野主要由预定义的卷积核大小控制。
所提出了一种由多个卷积注意力组合的自校准模块,用于替换基本的卷积结构,在不增加额外参数和计算量的情况下,该模块能够产生全局的感受野。相比于标准卷积,该模块产生的特征图更具有区分度。
该模块的优势所在:
1、传统卷积只能对小区域进行卷积操作,而自校准卷积模块使每个空间位置可以自适应的编码来自长范围区域的相关信息。
2、自校准卷积是普遍适用的,能够轻易地应用到标准的卷积层中,而不需要引入任何参数和复杂的头部或改变超参数。
3.怎么样:
3.1 SCONV网络结构
自校正卷积具体步骤如上图所示:
第一步,输入特征图X为C X H X W大小,拆分为两个C/2 X H X W大小的X1,X2;
第二步,卷积核K的维度为C X C X H X W,将K分为4个部分,每份的作用各不相同,分别记为K1,K2,K3,K4,其维度均为C/2 X C/2 X H X W;
为了有效地收集每个空间位置的丰富的上下文信息,作者提出在两个不同的尺度空间中进行卷积特征转换:原始尺度空间中的特征图(输入共享相同的分辨率)和下采样后的具有较小分辨率的潜在空间(用于自校正) 。利用下采样后特征具有较大的感受野,因此在较小的潜在空间中进行变换后的嵌入将用作参考,以指导原始特征空间中的特征变换过程。
第三步,对自校正尺度空间进行处理(Self-Calibration)
对T使用卷积核组进行特征变换︰
其中Up(⋅)表示线性插值操作,得到中间参考量从小尺度空间到原始特征空间的映射,则自校准操作可以表示为:
其中,σ表示sigmoid函数,符号“.”表示逐元素乘运算,X’被用作残差项,建立权重,用于自校准。自校准后的最终输出可以写作:
3.2 代码实现
自校正卷积SCConv
class SCConv(nn.Module):def __init__(self, inplanes, planes, stride, padding, dilation, groups, pooling_r, norm_layer):super(SCConv, self).__init__()# k2(Self-Calibration上半分支):先下采样,再通过卷积K2self.k2 = nn.Sequential(nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r), nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,padding=padding, dilation=dilation,groups=groups, bias=False),norm_layer(planes),)# k3(Self-Calibration下半分支):通过卷积K3self.k3 = nn.Sequential(nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,padding=padding, dilation=dilation,groups=groups, bias=False),norm_layer(planes),)# k4(Self-Calibration下半分支):通过卷积K4self.k4 = nn.Sequential(nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,padding=padding, dilation=dilation,groups=groups, bias=False),norm_layer(planes),)def forward(self, x):identity = x# Self-Calibration上半分支:输入特征x通过k2后,上采样到和输入特征的大小一样,再与输入特征进行残差连接,再通过sigmoid函数out = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)# Self-Calibration下半分支:输入特征x通过k3后,与Self-Calibration上半分支输出进行矩阵乘法out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)# 最后,将输出out通过k4out = self.k4(out) # k4return out
将自校正卷积融入到BottleNeck模块中:SCBottleNeck
class SCBottleneck(nn.Module):"""SCNet SCBottleneck将SCConv放入BottleNeck中"""expansion = 4# 平均池化的下采样率为4pooling_r = 4 # down-sampling rate of the avg pooling layer in the K3 path of SC-Conv.def __init__(self, inplanes, planes, stride=1, downsample=None,cardinality=1, bottleneck_width=32,avd=False, dilation=1, is_first=False,norm_layer=None):super(SCBottleneck, self).__init__()group_width = int(planes * (bottleneck_width / 64.)) * cardinality # int(planes * (32 /64)) * 1 = int(0.5 * planes)self.conv1_a = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)self.bn1_a = norm_layer(group_width)self.conv1_b = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)self.bn1_b = norm_layer(group_width)self.avd = avd and (stride > 1 or is_first)if self.avd:self.avd_layer = nn.AvgPool2d(3, stride, padding=1)stride = 1# k1:通过卷积K1self.k1 = nn.Sequential(nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride,padding=dilation, dilation=dilation,groups=cardinality, bias=False),norm_layer(group_width),)self.scconv = SCConv(group_width, group_width, stride=stride,padding=dilation, dilation=dilation,groups=cardinality, pooling_r=self.pooling_r, norm_layer=norm_layer)self.conv3 = nn.Conv2d(group_width * 2, planes * 4, kernel_size=1, bias=False)self.bn3 = norm_layer(planes*4)self.relu = nn.ReLU(inplace=True)self.downsample = downsampleself.dilation = dilationself.stride = stridedef forward(self, x):residual = x# 通过卷积分别得到两个通道数为输入特征通道数一半的特征out_a和out_bout_a = self.conv1_a(x)out_a = self.bn1_a(out_a)out_b = self.conv1_b(x)out_b = self.bn1_b(out_b)out_a = self.relu(out_a)out_b = self.relu(out_b)# out_a通过k1,out_b通过scconvout_a = self.k1(out_a)out_b = self.scconv(out_b)out_a = self.relu(out_a)out_b = self.relu(out_b)if self.avd:out_a = self.avd_layer(out_a)out_b = self.avd_layer(out_b)# 沿着dim=1(channel)进行拼接,再通过conv3out = self.conv3(torch.cat([out_a, out_b], dim=1))out = self.bn3(out)if self.downsample is not None:residual = self.downsample(x)# 对输出out进行残差连接out += residualout = self.relu(out)return out
参考:南开大学程明明团队新作 | ResNet的又一改进:SCNet
2D关键点检测之SCNet:Improving Convolutional Networks with Self-Calibrated Convolutions
相关文章:
SCNet:自校正卷积网络(附代码)
论文地址:https://mftp.mmcheng.net/Papers/20cvprSCNet.pdf 代码地址:https://github.com/MCG-NKU/SCNet 1.是什么? SCNet是一种卷积神经网络,它使用自校准卷积(Self-Calibrated Convolutions)来增强子…...
【PG】PostgreSQL客户端认证pg_hba.conf文件
目录 文件格式 连接类型(TYPE) 数据库(database) 用户(user) 连接地址(address) 格式 IPv4 IPv6 字符 主机名 主机名后缀 IP-address/IP-mask auth-method trust reject scram-sha-256 md5 password gss sspi …...
信创优选,国产开源。Solon v2.5.11 发布
Solon 是什么框架? Java 生态级应用开发框架。从零开始构建,有自己的标准规范与开放生态(历时五年,具备全球第二级别的生态规模)。与其他框架相比,解决了两个重要的痛点:启动慢,费内…...
180.188.16.1网站高并发,导致网站卡了,有什么方案处理?
处理网站高并发需要考虑多方面的因素,以下是一些解决方法: 增加服务器硬件:增加服务器内存、CPU、带宽等硬件资源,以提高服务器的处理能力,从而增强网站处理请求的能力。 使用CDN:将网站的静态资源&#x…...
P1077 [NOIP2012 普及组] 摆花 题解
文章目录 题目描述输入格式输出格式样例样例输入样例输出 数据范围与提示思路与部分实现完整代码 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m m m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的…...
kubernetes源码阅读与实战(3)
kubernetes源码二次开发系列 1、k8s二次开发之kubernetes开发概念 2、k8s二次开发之自定义的example展示 3、k8s二次开发之如何扩展kubernetes系统 4、k8s二次开发之kubernetes控制器的控制循环 5、k8s二次开发之kubernetes控制器的watch事件及event对象 6、k8s二次开发之…...
ESP8266模块常规调试过程讲解
ESP8266-WIFI模块串口调试过程讲解 一、ESP8266介绍 ESP8266是一个高度集成的无线SoC(System on a Chip)模块,基于ESP8266芯片,集成了Wi-Fi功能。具有丰富的特性和功能,广泛应用于各种物联网项目中。 ESP8266模块支持802.11b/g/n无线标准,内置TCP/IP协议栈,可以实现串…...
使用onnxruntime推理Bert模型
Bert模型类别:onnx 输入输出数据格式:.npz import onnxruntime import numpy as np import os# 加载 ONNX 模型 ort_session onnxruntime.InferenceSession(bert-base-uncased_final.onnx)# 指定输入文件夹和输出文件夹 input_folder output_folder …...
SQL group by、where和having语句用法
SQL 语句中的 GROUP BY 子句用于将具有相同值的行分组在一起,通常与聚合函数(如 COUNT、SUM、AVG 等)一起使用。WHERE 子句用于筛选符合条件的行。HAVING 子句则在分组后对分组结果进行进一步筛选。 以下是一个使用 SQL 语句中的 GROUP BY、W…...
贝叶斯变分方法:初学者指南--平均场近似
Eric Jang: A Beginners Guide to Variational Methods: Mean-Field Approximation (evjang.com) 一、说明 变分贝叶斯 (VB) 方法是统计机器学习中非常流行的一系列技术。VB 方法允许我们将 统计推断 问题(即,给定另一个随机变量的值来推断随机变量的值&…...
Node学习笔记之user用户API模块
1、获取用户的基本信息 步骤 获取登录会话存储的session中用户的id判断是否获取到id根据用户id查询数据库中的个人信息检查指定 id 的用户是否存在将密码设置为空将数据返回给前端 // 获取用户信息数据 exports.userinfo (req, res) > {(async function () {// 1. 获取…...
智慧公厕:为公众提供全新的公共厕所使用体验
智慧公厕管理系统通过智能化技术的应用,为公众提供了全新的公厕使用体验。不仅仅是一个普通的提供“方便”的公共设施,智慧公厕更融合了精准环境监测、厕位占用监测、设备状态实时监控等功能,同时还提供了自动化清洁、灯光照明、除臭杀菌消毒…...
共谈信创谋发展 | 开源网安主办的信创生态构建沙龙圆满完成
10月26日,由珠海市工业和信息化局、珠海市高新区科技创新和产业发展局指导,珠海华发产业园与开源网安珠海公司等联合主办的“赋能数字转型 提速国产替代”—Uni-Idea信创生态构建沙龙在华发信创产业园成功举办,近百位行业代表参加本次活动&…...
第四章认识Node.js模块化开发
Node.js系统模块 续上一篇文章第三章认识Node.js模块化开发-CSDN博客,这次继续来认识和总结以下node的常用模块开发 Node.js系统模块是指Node.js自带的一些模块,这些模块可以直接在Node.js中使用,无需安装其他包。以下是常用的Node.js系统模块…...
Widget必须在GUI线程中创建
背景:miniblink的vip版本,下载功能是独立线程,我希望在下载后弹出窗口,就在其中创建了QWidget子类对象。然后出现了上面的错误。 解决方法: 使用信号和槽来处理。 具体来讲,在独立线程中创建QObject子类…...
Kubernetes概念及实践
Kubernetes(K8S)中文文档_Kubernetes中文社区 Kubernetes 文档 | Kubernetes K8S 是负责自动化运维管理多个跨机器 Docker 程序的 集群。 kubeadm快速部署K8s集群的工具,如: 创建master node:kubeadm init 将worker node加入到集群中&#x…...
洛谷 B2007 A+B问题 C++代码
目录 题目描述 AC Code 题目描述 AC Code #include<bits/stdc.h> using namespace std; typedef long long ll; int main() { int a,b;cin>>a>>b;cout<<ab<<endl;return 0; }...
Git基础 | 原理、配置、用法、分支 合并
目录 1 git初步了解 1.1 git的安装 1.2 git原理模型 1.3 git基础配置 1.4 git基础用法 1 将文件加入暂存区 2 查看当前的git仓库状态 3 删除文件 4 commit 将暂存区文件加入本地git版本仓库 5 查看提交历史 更改 2 分支 2.1 创建分支 2.2 查看分支 2.3 切换分支 …...
刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)
1.运行效果:刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损)_哔哩哔哩_bilibili 环境库: NumPy 版本: 1.19.4 Pandas 版本: 0.23.4 Matplotlib 版本: 2.2.3 Keras …...
web:[网鼎杯 2020 青龙组]AreUSerialz
题目 点进题目发现 需要进行代码审计 function __destruct() {if($this->op "2")$this->op "1";$this->content "";$this->process();}这里有__destruct()函数,在对象销毁时自动调用,根据$op属性的值进行…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
[USACO23FEB] Bakery S
题目描述 Bessie 开了一家面包店! 在她的面包店里,Bessie 有一个烤箱,可以在 t C t_C tC 的时间内生产一块饼干或在 t M t_M tM 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC,tM≤109)。由于空间…...
数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...

