当前位置: 首页 > news >正文

【数值计算方法】Gauss消元法及其Python/C实现

文章目录

  • 一、基础理论
    • 1. 线性方程组
    • 2. Gauss消元法的详细步骤
    • 3. 注意事项
  • 二、具体计算过程
    • 1. 用Gauss 消元法求A的LU分解,并由此求解方程组 Ax =b
      • a. 将A进行LU分解。
      • b. 使用LU分解求解方程组Ax=b
  • 三、代码实现
    • 1. Python代码实现
    • 2. C语言代码实现

  Gauss消元法,也称为高斯消元法或高斯-约当消元法,是一种用于求解线性方程组的数值方法。它是由德国数学家卡尔·弗里德里希·高斯在18世纪末发展起来的。

  Gauss消元法的基本思想是通过一系列的行变换将线性方程组转化为一个上三角形的方程组,然后通过回代过程求解方程组的解。

一、基础理论

1. 线性方程组

  线性方程组是由一组线性方程组成的方程集合。每个线性方程都可以表示为形如 “a₁x₁ + a₂x₂ + … + aₙxₙ = b” 的形式,其中 a₁, a₂, …, aₙ 是已知的常数,x₁, x₂, …, xₙ 是未知的变量,b 是已知的常数。方程中的每一项都是变量的一次幂与常数的乘积,且没有乘法运算符连接变量。
  线性方程组可以包含多个线性方程,这些方程共同描述了一组变量的关系。解线性方程组就是找到满足所有方程的变量值,使得所有方程都成立。解线性方程组的目标是找到一组变量的值,使得方程组中的每个方程都得到满足。
  线性方程组的解可以有多个或者没有解。如果存在至少一个满足所有方程的变量值组合,那么方程组有解。如果不存在这样的变量值组合,那么方程组无解。
  解线性方程组的方法包括高斯消元法、矩阵法、克莱姆法则等。这些方法可以用于求解不同规模和形式的线性方程组。线性方程组在数学、物理、工程等领域中广泛应用,用于描述和解决各种实际问题。

2. Gauss消元法的详细步骤

  1. 将线性方程组写成增广矩阵的形式,即将系数矩阵和常数向量合并在一起。
  2. 选取第一个未知数的系数不为零的方程作为主元方程,如果没有这样的方程,则交换两行或者两列,使得主元系数不为零。
  3. 将主元方程的系数除以主元系数,使主元系数变为1。
  4. 用主元方程的系数乘以其他方程的主元系数,并将得到的结果从相应的方程中减去,以消除其他方程中的主元系数。
  5. 重复步骤2到步骤4,直到所有的未知数的系数都变为上三角形矩阵的形式。
  6. 进行回代过程,从最后一行开始,依次求解每个未知数的值。回代的过程是通过将已知的未知数代入到方程中,求解出未知数的值。

3. 注意事项

&emps;&emps;Gauss消元法的优点是可以精确地求解线性方程组,适用于任意个数的未知数和方程,在数值计算和科学工程领域有广泛的应用,然而,它也有一些限制和注意事项:

  1. 如果方程组的系数矩阵是奇异的(即行列式为零),则无法使用Gauss消元法求解。

  2. 在进行消元过程中,需要注意避免除以零的情况,如果遇到主元系数为零的情况,需要进行行交换或列交换。

  3. 如果方程组的系数矩阵很大,消元的计算量会很大,可能需要较长的计算时间。

二、具体计算过程

1. 用Gauss 消元法求A的LU分解,并由此求解方程组 Ax =b

A = [ [ 1 , 2 , 1 , − 2 ] , [ 2 , 5 , 3 , − 2 ] , [ − 2 , − 2 , 3 , 5 ] , [ 1 , 3 , 2 , 3 ] ] A=[ [1, 2, 1, -2], [2, 5, 3, -2], [-2, -2, 3, 5], [1, 3, 2, 3] ] A=[[1,2,1,2],[2,5,3,2],[2,2,3,5],[1,3,2,3]]

b = [ 2 , 8 , 4 , 9 ] b=[ 2, 8, 4, 9 ] b=[2,8,4,9]

a. 将A进行LU分解。

  1. 选取第一个未知数的系数不为零的方程作为主元方程,即第1行第1列元素不为零,因此选择第1行为主元方程。

  2. 将主元方程的系数除以主元系数,即第1行的所有元素除以1,得到:

1   2   1  -2
2   5   3  -2
-2 -2   3   5
1   3   2   3
  1. 用主元方程的系数乘以其他方程的主元系数,并将得到的结果从相应的方程中减去,以消除其他方程中的主元系数。对第2行、第3行和第4行进行消元操作:
1   2   1  -2
0   1   1   2
0   4   4   1
0   1   1   5
  1. 选择第二个未知数的系数不为零的方程作为主元方程,即第2行第2列元素不为零,因此选择第2行为主元方程。

  2. 将主元方程的系数除以主元系数,即第2行的所有元素除以1,得到:

1   2   1  -2
0   1   1   2
0   4   4   1
0   1   1   5
  1. 用主元方程的系数乘以其他方程的主元系数,并将得到的结果从相应的方程中减去,以消除其他方程中的主元系数。对第3行和第4行进行消元操作:
1   2   1  -2
0   1   1   2
0   0   0  -7
0   0   0   3

现在,我们得到了上三角形矩阵U和下三角形矩阵L:

U = 
1   2   1  -2
0   1   1   2
0   0   0  -7
0   0   0   3L = 
1   0   0   0
2   1   0   0
-2  -4  1   0
1   -1  -1  1

b. 使用LU分解求解方程组Ax=b

  1. 首先,根据LU分解,我们可以得到Ly=b,其中y是一个新的未知向量。
1   0   0   0   |  y1  =  2
2   1   0   0   |  y2  =  8
-2  -4  1   0   |  y3  =  4
1   -1  -1  1   |  y4  =  9

通过前向代入法,我们可以求解出y的值:

y1 = 2
y2 = 8 - 2y1 = 8 - 2(2) = 4
y3 = 4 - 2y1 + 4y2 = 4 - 2(2) + 4(4) = 18
y4 = 9 - y1 + y2 - y3 = 9 - 2 + 4 - 18 = -7
  1. 然后,根据LU分解,我们可以得到Ux=y,其中x是我们要求解的未知向量。
1   2   1  -2   |  x1  =  y1
0   1   1   2   |  x2  =  y2
0   0   0  -7   |  x3  =  y3
0   0   0   3   |  x4  =  y4

通过回代法,我们可以求解出x的值:

x1 = y1 = 2
x2 = y2 - x1 = 4 - 2 = 2
x3 = y3 / (-7) = 18 / (-7)-2.571
x4 = y4 / 3 = (-7) / 3-2.333

  因此,方程组Ax=b的解为x = [2, 2, -2.571, -2.333]。

三、代码实现

1. Python代码实现

import numpy as npA = np.array([[1, 2, 1, -2],[2, 5, 3, -2],[-2, -2, 3, 5],[1, 3, 2, 3]])b = np.array([2, 8, 4, 9])def gauss_elimination(A, b):n = len(A)for i in range(n-1):for j in range(i+1, n):factor = A[j, i] / A[i, i]A[j, i:] -= factor * A[i, i:]b[j] -= factor * b[i]return A, bdef back_substitution(U, y):n = len(U)x = np.zeros(n)x[-1] = y[-1] / U[-1, -1]for i in range(n-2, -1, -1):x[i] = (y[i] - np.dot(U[i, i+1:], x[i+1:])) / U[i, i]return xdef solve_linear_equations(A, b):U, y = gauss_elimination(A, b)x = back_substitution(U, y)return xx = solve_linear_equations(A, b)
print("Solution x:", x)

2. C语言代码实现

相关文章:

【数值计算方法】Gauss消元法及其Python/C实现

文章目录 一、基础理论1. 线性方程组2. Gauss消元法的详细步骤3. 注意事项 二、具体计算过程1. 用Gauss 消元法求A的LU分解,并由此求解方程组 Ax ba. 将A进行LU分解。b. 使用LU分解求解方程组Axb 三、代码实现1. Python代码实现2. C语言代码实现 Gauss消元法&#x…...

ins老被封禁?快来看看这些雷区你踩了没!

做外贸的小伙伴应该都运营或者接触过Instagram,但是忽视平台规则和操作不当很容易出现ins被封号的情况,今天就给大家介绍ins封禁原因,大家在运营过程中就可以很好避免了! Instagram 封禁原因 1.短时间内大量关注和点赞操作 为了封…...

《Effective Java》读书笔记(1-2章)

第一章 创建和销毁对象 1. 考虑用静态代替构造方法 想要获取一个类的实例,一种传统的方式是通过共有的构造器,当然还可以使用另一种技术:提供共有的静态工厂方法。 什么是静态工厂? public static Boolean valueOf(boolean b) …...

C++版split(‘_‘)函数

目录 1 使用stringstream2 使用双指针算法 1 使用stringstream #include <iostream> #include <sstream> #include <string> #include <vector>using namespace std;vector<string> split(string str, char separator) {vector<string> …...

Leaky singletons的一种使用场景

Leaky singletons的一种使用场景 文章目录 Leaky singletons的一种使用场景场景问题本质如何解决Leaky singletons 场景 最近遇到了这个问题&#xff0c;正好想记录下。 比如你有一段代码&#xff0c;如下&#xff08;伪代码&#xff09;&#xff1a; static std::map<int…...

TensorFlow图像多标签分类实例

接下来&#xff0c;我们将从零开始讲解一个基于TensorFlow的图像多标签分类实例&#xff0c;这里以图片验证码为例进行讲解。 在我们访问某个网站的时候&#xff0c;经常会遇到图片验证码。图片验证码的主要目的是区分爬虫程序和人类&#xff0c;并将爬虫程序阻挡在外。 下面…...

Python程序设计期末复习笔记

文章目录 一、数据存储1.1 倒计时1.2 os库1.3 字符串操作1.4 文件操作1.5 列表操作1.6 元组1.7 字典 二、文本处理及可视化2.1 jieba分词2.2 集合操作2.3 pdf文件读取2.4 参数传递2.5 变量作用域 三、数据处理分析3.1 Sumpy3.2 Matplotlib3.3 Numpy 四、Pandas4.1 索引操作4.2 …...

人大与加拿大女王大学金融硕士—与您共创辉煌

生活的本质就是有意识的活着&#xff0c;而生活的智慧就是活出了自己想要的样子&#xff0c;那些真正厉害的人&#xff0c;从来都在默默努力&#xff0c;伴随着金融人才的需求日益增长&#xff0c;中国人民大学与加拿大女王大学联合推出了人大女王金融硕士项目&#xff0c;旨在…...

Generalized Zero-Shot Learning With Multi-Channel Gaussian Mixture VAE

L D A _{DA} DA​最大化编码后两种特征分布之间的相似性 辅助信息 作者未提供代码...

10.30 知识总结(标签分类、css介绍等)

一、 标签的分类 1.1 单标签 img br hr <img /> 1.2 双标签 a h p div <a></a> 1.3 按照标签属性分类 1.3.1 块儿标签 即自己独自占一行 h1-h6 p div 1.3.2 行内(内联)标签 即自身文本有多大就占多大 a span u i b s 二、 标签的嵌套 标签之间是可以互相…...

DoLa:对比层解码提高大型语言模型的事实性

DoLa&#xff1a;对比层解码提高大型语言模型的事实性 摘要1 引言2 方法2.1 事实知识在不同层级上演化2.2 动态早期层选择2.3 预测对比 3 实验3.1 任务3.2 实验设置3.3 多项选择3.3.1 TruthfulQA&#xff1a;多项选择3.3.2 FACTOR&#xff1a;维基、新闻 3.4 开放式文本生成3.4…...

解决由于找不到mfc140u.dll无法继续执行此代码问题的4个方法

mfc140u.dll是Microsoft Foundation Class&#xff08;微软基础类库&#xff09;中的一个动态链接库文件&#xff0c;它包含了许多用于实现Windows应用程序的基本功能。当我们在编写或运行基于MFC的程序时&#xff0c;如果系统中缺少这个文件&#xff0c;就会出现“找不到mfc14…...

MySQL高性能优化规范建议

当涉及到MySQL数据库的性能优化时&#xff0c;有许多方面需要考虑。以下是一些通用的MySQL性能优化规范建议&#xff1a; 合适的索引&#xff1a; 确保表中的字段使用了适当的索引。这能大幅提升检索速度。但避免过多索引&#xff0c;因为它会增加写操作的成本。 优化查询语句…...

pytorch 入门 (五)案例三:乳腺癌识别-VGG16实现

本文为&#x1f517;小白入门Pytorch内部限免文章 &#x1f368; 本文为&#x1f517;小白入门Pytorch中的学习记录博客&#x1f366; 参考文章&#xff1a;【小白入门Pytorch】乳腺癌识别&#x1f356; 原作者&#xff1a;K同学啊 在本案例中&#xff0c;我将带大家探索一下深…...

vue中electron与vue通信(fs.existsSync is not a function解决方案)

electron向vue发送消息 dist/main.js (整个文件配置在另一条博客里) win new BrowserWindow({width:1920,height:1080,webPreferences: {// 是否启用Node integrationnodeIntegration: true, // Electron 5.0.0 版本之后它将被默认false// 是否在独立 JavaScript 环境中运行…...

LSTM-Based Anomaly Detection of Process Instances Benchmark and Tweaks翻译

论文《LSTM-Based Anomaly Detection of Process Instances Benchmark and Tweaks》翻译 LSTM-Based Anomaly Detection of Process Instances Benchmark and Tweaks翻译...

文件类漏洞总结, 文件包含, 文件上传, 文件下载

文件类漏洞总结 一, 文件包含 1. 文件包含绕过 实际环境中不是都是像$_GET[file]; incude $file 这样直接把变量传入包含函数的。 在很多时候包含的变量文件不是完全可控的&#xff0c;比如下面这段代码指定了前缀和后缀: <?php $file S_GET[filename]; include /opt/…...

SpringBoot篇---第四篇

系列文章目录 文章目录 系列文章目录一、springboot常用的starter有哪些二、 SpringBoot 实现热部署有哪几种方式&#xff1f;三、如何理解 Spring Boot 配置加载顺序&#xff1f; 一、springboot常用的starter有哪些 spring-boot-starter-web 嵌入tomcat和web开发需要servlet…...

Knife4j使用教程(一) -- 在不同版本SpringBoot,选用不同的Knife4j相关的jar包

目录 1. Knife4j的项目背景 2. Knife4j的选择 2.1 选用 Spring Boot 版本在 2.4.0~3.0.0之间 2.2 选用 Spring Boot 版本在 3.0.0之上...

Octave Convolution学习笔记 (附代码)

论文地址&#xff1a;https://export.arxiv.org/pdf/1904.05049 代码地址&#xff1a;https://gitcode.com/mirrors/lxtgh/octaveconv_pytorch/overview?utm_sourcecsdn_github_accelerator 1.是什么&#xff1f; OctaveNet网络属于paper《Drop an Octave: Reducing Spatia…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...