当前位置: 首页 > news >正文

二叉树的遍历+二叉树的基本操作

文章目录

  • 二叉树的操作
    • 一、 二叉树的存储
      • 1.二叉树的存储结构
    • 二、 二叉树的基本操作
      • 1.前置
        • 创建一棵二叉树:
          • 1. 定义结点
        • 2.简单的创建二叉树
      • 2.二叉数的遍历
          • 1.前序遍历
          • 2.中序遍历
          • 3.后序遍历
          • 4.层序遍历
      • 3.二叉树的操作
        • 1.获取树中节点的个数
        • 2.获取叶子节点的个数
        • 3.获取第K层节点的个数
        • 4.获取二叉树的高度


二叉树的操作

一、 二叉树的存储

1.二叉树的存储结构

  • 顺序存储
  • 类似于链表的链式存储
// 孩子表示法
class Node {
int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {int val; Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent; // 当前节点的根节点
}

二、 二叉树的基本操作

1.前置

在这里插入图片描述

创建一棵二叉树:
1. 定义结点
public class TestBinaryTree {static class  TreeNode{//public char val;//数据域public TreeNode left;//左孩子的引用public TreeNode right;//右孩子的引用public TreeNode(char val){//构造方法this.val = val;}}public TreeNode root;//二叉树的根节点
}

1.设置数据域,左右孩子的引用

2.设置构造方法

3.设置该树的根节点

2.简单的创建二叉树
    public TreeNode creatTree(){//创建一个二叉树TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');A.left = B;A.right = C;B.left = D;B.right = E;E.left = H;C.left = F;C.right = G;return A;}

只是简单的手动创建二叉树,正确的写法在下文用递归完成

2.二叉数的遍历

在这里插入图片描述

1.前序遍历

根节点 -> 左子树 -> 右子树

1.遇到根节点,先打印根节点

2.根节点打印完,先打印左子树,左边打印完了,再打印右子树

3.每棵树都有根、左、右,子树中同样根据该顺序打印

ABDCEF

遍历思路:

    //前序遍历       先根,再左,后右//递归实现:public  void preOrder(TreeNode root){if (root==null){return ;}System.out.println(root.val);preOrder(root.left);preOrder(root.right);}
  • 截止条件为结点等于空
  • 如果不为空,打印根结点的值
  • 递归子树,遇到空返回
  • 把左子树递归完后,再进入右子树

子问题思路:

class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();if (root==null){return res;}res.add(root.val);List<Integer> leftTree = preorderTraversal(root.left);res.addAll(leftTree);List<Integer> rightTree = preorderTraversal(root.right);res.addAll(rightTree);return res;}
}
2.中序遍历

左子树 -> 根节点 -> 右子树

先打印左子树,左子树打印完了,再打印根节点,最后打印右子树

    //中序遍历public  void inOrder(TreeNode root){if (root==null){return ;}inOrder(root.left);System.out.print(root.val+" ");inOrder(root.right);}

DBAECF

3.后序遍历

左子树 -> 右子树 -> 根节点

先打印左子树,再打印右子树,最后打印根节点

DBEFCA

//后序遍历public  void postOrder(TreeNode root){if (root==null){return ;}postOrder(root.left);postOrder(root.right);System.out.print(root.val+" ");}
4.层序遍历

按从左到右,从上到下的顺序

ABCDEF

  • 前序遍历可以定位根的位置

  • 中序遍历找到根,根的左边就是左子树,根的右边是右子树

  • 只根据前序遍历和后续遍历不能创建一个二叉树,无法确定左右子树

3.二叉树的操作

1.获取树中节点的个数

时间复杂度 : o (N) 要遍历每一个结点

空间复杂度 :o (log2N) 开辟的内存 ~= 高度,开辟右树的时候,左树已经递归完了

(log2N)->完全二叉树 单分支数:o(N)

子问题思路:左数的结点+右树的结点+1

    public int size(Node root) {if (root == null) {return 0;}int leftSize = size(root.left);int rightSize = size(root.right);return leftSize + rightSize + 1;}

结点为空返回0;

一个结点的左右子结点都为null,返回0+0+1 = 1,代表该子树的结点数

左子树结点数+右子树结点数+1 等于当前数的总结点数

遍历思路:遇见结点+1

    public int nodeSize = 0;public void size(TreeNode root) {if (root == null) {return 0;}nodeSize++;size(root.left);size(root.right); }

结点不为空就+1

2.获取叶子节点的个数
    public int getLeafNodeCount(TreeNode root) {if (root == null) {return 0;}if (root.left == null && root.right == null) {return 1;//遇到叶子结点,返回1}int leftSize = getLeafNodeCount(root.left);//递归返回左数的叶子结点个数int rightSize = getLeafNodeCount(root.right);//递归返回右数的叶子结点个数return leftSize + rightSize;}

子问题思路:

遇到叶子结点,返回1

递归找到底层的叶子结点,层层返回,左右子树分别包含的叶子结点数之和

    public static int leafSize;public void getLeafNodeCount2(TreeNode root) {if (root == null){return;}if (root.left ==null&& root.right==null){leafSize++;}getLeafNodeCount2(root.left);getLeafNodeCount2(root.right);}

递归思路,遇到符合的叶子结点,计数+1

3.获取第K层节点的个数

子问题思路:

    //获取第K层节点的个数public int getKLevelNodeCount(TreeNode root, int k) {if (root == null) {return 0;}if (k == 1) {return 1;}int liftSize = getKLevelNodeCount(root.left, k - 1);int rightSize = getKLevelNodeCount(root.right, k - 1);return liftSize + rightSize;}

1.求 root 的第 K 层结点 ==求左树的第K-1层结点 + 求右树的第K-1层结点

2.不断递归子树,当 K-1 为1时,所求的结点数的返回值之和 就为K层的结点个数

4.获取二叉树的高度
    // 获取二叉树的高度public int getHeight(TreeNode root) {if (root == null) {return 0;}int leftHeight= getHeight(root.left);int rightHeight= getHeight(root.right);return (leftHeight > rightHeight) ? leftHeight + 1 : rightHeight + 1;}

1.求出左树的高度和右树的高度,返回两者中的最大值+1

2.root==null ,返回0

3.时间复杂度 o(N), N为结点个数,每个结点在递归中只被遍历一遍

4.空间复杂度:o(height),height为二叉树高度,递归函数需要栈空间,栈空间取决于递归的深度,空间复杂的==二叉树的高度

点击移步博客主页,欢迎光临~

偷cyk的图

相关文章:

二叉树的遍历+二叉树的基本操作

文章目录 二叉树的操作一、 二叉树的存储1.二叉树的存储结构 二、 二叉树的基本操作1.前置创建一棵二叉树&#xff1a;1. 定义结点 2.简单的创建二叉树 2.二叉数的遍历1.前序遍历2.中序遍历3.后序遍历4.层序遍历 3.二叉树的操作1.获取树中节点的个数2.获取叶子节点的个数3.获取…...

Go 语言gin框架的web

节省时间与精力&#xff0c;更高效地打造稳定可靠的Web项目&#xff1a;基于Go语言和Gin框架的完善Web项目骨架。无需从零开始&#xff0c;直接利用这个骨架&#xff0c;快速搭建一个功能齐全、性能优异的Web应用。充分发挥Go语言和Gin框架的优势&#xff0c;轻松处理高并发、大…...

Docker底层原理:Cgroup V2的使用

文章目录 检查 cgroup2 文件系统是否已加载检查系统是否已挂载 cgroup2 文件系统创建 cgroup2 层次结构查看 cgroup2 开启的资源控制类型启用 cgroup2 资源控制设置 cgroup2 资源限制加入进程到 cgroup2 检查 cgroup2 文件系统是否已加载 cat /proc/filesystems | grep cgroup…...

历年上午真题笔记(2014年)

解析:A 网络设计的三层模型 : 接入层:Layer 2 Switching,最终用户被许可接入网络的点,用户通过接入层可以访问网络设备。 汇聚层:Layer2/3 Switching,访问层设备的汇聚点,负责汇接配线单元,利用二、三层技术实现工作组分段及网络故障的隔离,以免对核心层网络设备造…...

数据库软考知识

分布式数据库透明性 封锁 加上共享锁之后只能加共享锁&#xff0c;加上排他锁之后&#xff0c;啥锁都不能加。 分布式数据库特性 伪传递定理 SQL函数定义&#xff0c;有点冷 来了奥&#xff0c;更冷 存储过程 很重要&#xff0c;下午第二大题也是数据库...

学习笔记|配对样本均数T检验|SPSS常用的快捷键|规范表达|《小白爱上SPSS》课程:SPSS第六讲 | 配对样本均数T检验

目录 学习目的软件版本原始文档配对样本均数T检验一、实战案例二、案例解析三、统计策略四、SPSS操作1、正态性检验2、配对样本T检验 五、结果解读六、规范报告1、规范表格2、规范文字 划重点Tips:SPSS常用的快捷键 学习目的 SPSS第六讲 | 配对样本均数T检验 软件版本 IBM S…...

python内置模块smtplib、email 发送电子邮件

一、简介 smtplib 是 Python 的标准库之一&#xff0c;用于发送电子邮件。它提供了一个简单的接口来连接到 SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;服务器&#xff0c;并通过该服务器发送电子邮件。 email 是 Python 的标准库之一&#xff0c;用于处理电子…...

Qt使用QWebEngineView一些记录

1.关闭软件警告&#xff1a; Release of profile requested but WebEnginePage still not deleted. Expect troubles! 原因&#xff0c;系统退出关闭view&#xff0c;没有释放page。 解决办法&#xff1a;手动释放page 顺便把view也释放了。 Widget::~Widget() {updateIni…...

【2023.10.30练习】C语言-判断等式成立

计算机能力挑战初赛2020.20题 题目描述&#xff1a; 输入正整数A、B、C(0<A,B,C<10000),若用、-、*、/、%之一组成等式(即ABC&#xff0c;是上述运算符之一&#xff0c;)&#xff0c;则输出“YES”&#xff0c;否则输出“NO”&#xff1b; 输入&#xff1a; 第一行输入…...

Wpf 使用 Prism 实战开发Day03

一.实现左侧菜单绑定 效果图: 1.首先需要在项目中创建 mvvm 的架构模式 创建 Models &#xff0c;放置实体类。 实体类需要继承自Prism 框架的 BindableBase&#xff0c;目的是让实体类支持数据的动态变更! 例如: 系统导航菜单实体类 / <summary>/// 系统导航菜单实体类…...

JavaEE-cookie和session

本部分内容包括 cookie基本概念&#xff0c;sendcookies和getcookies代码&#xff1b; session基本概念&#xff0c;session实现登陆界面&#xff1b; 上述过程中涉及的代码如下&#xff1a; 1 import javax.servlet.ServletException; import javax.servlet.annotation.WebSe…...

Java设计模式之命令模式

目录 定义 结构 案例 优点 缺点 使用场景 JDK源码解析 Thread中start与run方法的区别 定义 将一个请求封装为一个对象&#xff0c;使发出请求的责任和执行请求的责任分割开。这样两者之间通过命令对象进行沟通&#xff0c;这样方便将命令对象进行存储、传递、调用、增…...

记录一段帮朋友写的代码,使用牛顿-拉夫逊方法解方程

要求 已知公式&#xff1a; t G A B F r B r 2 2 F A 2 B G A F ln ⁡ ( r − A ) C o n s t t\frac{GAB}{F}r\frac{Br^2}{2F}\frac{A^2BGA}{F}\ln (r-A)Const tFGAB​r2FBr2​FA2BGA​ln(r−A)Const 其中 t 的值为0-1000&#xff0c;每间隔25取一次值A2.12941E-10B0.…...

滑动窗口限流算法实现一

固定算法 原理&#xff1a;固定算法是将时间线分隔成固定大小的时间窗口&#xff0c;每个窗口都会有个计数器&#xff0c;用来记录窗口时间范围内的请求总数&#xff0c;如果窗口的请求总数达到最大限定值&#xff0c;会认定流量超限。比如将窗口大小设为1分钟&#xff0c;每分…...

简单明了!网关Gateway路由配置filters实现路径重写及对应正则表达式的解析

问题背景&#xff1a; 前端需要发送一个这样的请求&#xff0c;但出现404 首先解析请求的变化&#xff1a; http://www.51xuecheng.cn/api/checkcode/pic 1.请求先打在nginx&#xff0c;www.51xuecheng.cn/api/checkcode/pic部分匹配到了之后会转发给网关进行处理变成localho…...

EMQX内置Web管理控制台-Dashboard

一、Dashboard概述 EMQX Dashboard官网文档&#xff1a;https://docs.emqx.com/zh/enterprise/v5.1/dashboard/introduction.html 1、简介 EMQX 为用户提供了一个功能强大的内置管理控制台&#xff0c;即 EMQX Dashboard。通过这个控制台的 Web 界面&#xff0c;用户可以轻松监…...

计算机网络重点概念整理-第四章 网络层【期末复习|考研复习】

计算机网络复习系列文章传送门&#xff1a; 第一章 计算机网络概述 第二章 物理层 第三章 数据链路层 第四章 网络层 第五章 传输层 第六章 应用层 第七章 网络安全 计算机网络整理-简称&缩写 文章目录 前言四、网络层4.1 网络层功能4.1.1 电路交换、报文交换与分组交换4.1…...

数组转树形数据

const nodes [{ id: 3, name: 节点C, pid: 1 },{ id: 6, name: 节点F, pid: 3 },{ id: 0, name: root, pid: null },{ id: 1, name: 节点A, pid: 0 },{ id: 8, name: 节点H, pid: 4 },{ id: 4, name: 节点D, pid: 1 },{ id: 2, name: 节点B, pid: 0 },{ id: 5, name: 节点E, p…...

react动态插入样式

在开发组件过程中&#xff0c;偶尔需要动态的插入css&#xff0c;比如在在iframe中渲染组件后&#xff0c;iframe中是没有样式的&#xff0c;所以需要手动插入样式。 插入样式 通常是在useLayoutEffect中动态创建style标签 useLayoutEffect(() > {if (!ref.current) {cons…...

OkHttp网络框架深入理解-SSL握手与加密

OkHttp简介 由Square公司贡献的一个处理网络请求的开源项目&#xff0c;是目前Android使用最广泛的网络框架。从Android4.4开始HttpURLConnection的底层实现采用的是OkHttp。 特点&#xff1a; 支持HTTP/2并允许对同一主机的所有请求共享一个套接字通过连接池,减少了请求延迟…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...