当前位置: 首页 > news >正文

二叉树的遍历+二叉树的基本操作

文章目录

  • 二叉树的操作
    • 一、 二叉树的存储
      • 1.二叉树的存储结构
    • 二、 二叉树的基本操作
      • 1.前置
        • 创建一棵二叉树:
          • 1. 定义结点
        • 2.简单的创建二叉树
      • 2.二叉数的遍历
          • 1.前序遍历
          • 2.中序遍历
          • 3.后序遍历
          • 4.层序遍历
      • 3.二叉树的操作
        • 1.获取树中节点的个数
        • 2.获取叶子节点的个数
        • 3.获取第K层节点的个数
        • 4.获取二叉树的高度


二叉树的操作

一、 二叉树的存储

1.二叉树的存储结构

  • 顺序存储
  • 类似于链表的链式存储
// 孩子表示法
class Node {
int val; // 数据域Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {int val; Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent; // 当前节点的根节点
}

二、 二叉树的基本操作

1.前置

在这里插入图片描述

创建一棵二叉树:
1. 定义结点
public class TestBinaryTree {static class  TreeNode{//public char val;//数据域public TreeNode left;//左孩子的引用public TreeNode right;//右孩子的引用public TreeNode(char val){//构造方法this.val = val;}}public TreeNode root;//二叉树的根节点
}

1.设置数据域,左右孩子的引用

2.设置构造方法

3.设置该树的根节点

2.简单的创建二叉树
    public TreeNode creatTree(){//创建一个二叉树TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');TreeNode G = new TreeNode('G');TreeNode H = new TreeNode('H');A.left = B;A.right = C;B.left = D;B.right = E;E.left = H;C.left = F;C.right = G;return A;}

只是简单的手动创建二叉树,正确的写法在下文用递归完成

2.二叉数的遍历

在这里插入图片描述

1.前序遍历

根节点 -> 左子树 -> 右子树

1.遇到根节点,先打印根节点

2.根节点打印完,先打印左子树,左边打印完了,再打印右子树

3.每棵树都有根、左、右,子树中同样根据该顺序打印

ABDCEF

遍历思路:

    //前序遍历       先根,再左,后右//递归实现:public  void preOrder(TreeNode root){if (root==null){return ;}System.out.println(root.val);preOrder(root.left);preOrder(root.right);}
  • 截止条件为结点等于空
  • 如果不为空,打印根结点的值
  • 递归子树,遇到空返回
  • 把左子树递归完后,再进入右子树

子问题思路:

class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();if (root==null){return res;}res.add(root.val);List<Integer> leftTree = preorderTraversal(root.left);res.addAll(leftTree);List<Integer> rightTree = preorderTraversal(root.right);res.addAll(rightTree);return res;}
}
2.中序遍历

左子树 -> 根节点 -> 右子树

先打印左子树,左子树打印完了,再打印根节点,最后打印右子树

    //中序遍历public  void inOrder(TreeNode root){if (root==null){return ;}inOrder(root.left);System.out.print(root.val+" ");inOrder(root.right);}

DBAECF

3.后序遍历

左子树 -> 右子树 -> 根节点

先打印左子树,再打印右子树,最后打印根节点

DBEFCA

//后序遍历public  void postOrder(TreeNode root){if (root==null){return ;}postOrder(root.left);postOrder(root.right);System.out.print(root.val+" ");}
4.层序遍历

按从左到右,从上到下的顺序

ABCDEF

  • 前序遍历可以定位根的位置

  • 中序遍历找到根,根的左边就是左子树,根的右边是右子树

  • 只根据前序遍历和后续遍历不能创建一个二叉树,无法确定左右子树

3.二叉树的操作

1.获取树中节点的个数

时间复杂度 : o (N) 要遍历每一个结点

空间复杂度 :o (log2N) 开辟的内存 ~= 高度,开辟右树的时候,左树已经递归完了

(log2N)->完全二叉树 单分支数:o(N)

子问题思路:左数的结点+右树的结点+1

    public int size(Node root) {if (root == null) {return 0;}int leftSize = size(root.left);int rightSize = size(root.right);return leftSize + rightSize + 1;}

结点为空返回0;

一个结点的左右子结点都为null,返回0+0+1 = 1,代表该子树的结点数

左子树结点数+右子树结点数+1 等于当前数的总结点数

遍历思路:遇见结点+1

    public int nodeSize = 0;public void size(TreeNode root) {if (root == null) {return 0;}nodeSize++;size(root.left);size(root.right); }

结点不为空就+1

2.获取叶子节点的个数
    public int getLeafNodeCount(TreeNode root) {if (root == null) {return 0;}if (root.left == null && root.right == null) {return 1;//遇到叶子结点,返回1}int leftSize = getLeafNodeCount(root.left);//递归返回左数的叶子结点个数int rightSize = getLeafNodeCount(root.right);//递归返回右数的叶子结点个数return leftSize + rightSize;}

子问题思路:

遇到叶子结点,返回1

递归找到底层的叶子结点,层层返回,左右子树分别包含的叶子结点数之和

    public static int leafSize;public void getLeafNodeCount2(TreeNode root) {if (root == null){return;}if (root.left ==null&& root.right==null){leafSize++;}getLeafNodeCount2(root.left);getLeafNodeCount2(root.right);}

递归思路,遇到符合的叶子结点,计数+1

3.获取第K层节点的个数

子问题思路:

    //获取第K层节点的个数public int getKLevelNodeCount(TreeNode root, int k) {if (root == null) {return 0;}if (k == 1) {return 1;}int liftSize = getKLevelNodeCount(root.left, k - 1);int rightSize = getKLevelNodeCount(root.right, k - 1);return liftSize + rightSize;}

1.求 root 的第 K 层结点 ==求左树的第K-1层结点 + 求右树的第K-1层结点

2.不断递归子树,当 K-1 为1时,所求的结点数的返回值之和 就为K层的结点个数

4.获取二叉树的高度
    // 获取二叉树的高度public int getHeight(TreeNode root) {if (root == null) {return 0;}int leftHeight= getHeight(root.left);int rightHeight= getHeight(root.right);return (leftHeight > rightHeight) ? leftHeight + 1 : rightHeight + 1;}

1.求出左树的高度和右树的高度,返回两者中的最大值+1

2.root==null ,返回0

3.时间复杂度 o(N), N为结点个数,每个结点在递归中只被遍历一遍

4.空间复杂度:o(height),height为二叉树高度,递归函数需要栈空间,栈空间取决于递归的深度,空间复杂的==二叉树的高度

点击移步博客主页,欢迎光临~

偷cyk的图

相关文章:

二叉树的遍历+二叉树的基本操作

文章目录 二叉树的操作一、 二叉树的存储1.二叉树的存储结构 二、 二叉树的基本操作1.前置创建一棵二叉树&#xff1a;1. 定义结点 2.简单的创建二叉树 2.二叉数的遍历1.前序遍历2.中序遍历3.后序遍历4.层序遍历 3.二叉树的操作1.获取树中节点的个数2.获取叶子节点的个数3.获取…...

Go 语言gin框架的web

节省时间与精力&#xff0c;更高效地打造稳定可靠的Web项目&#xff1a;基于Go语言和Gin框架的完善Web项目骨架。无需从零开始&#xff0c;直接利用这个骨架&#xff0c;快速搭建一个功能齐全、性能优异的Web应用。充分发挥Go语言和Gin框架的优势&#xff0c;轻松处理高并发、大…...

Docker底层原理:Cgroup V2的使用

文章目录 检查 cgroup2 文件系统是否已加载检查系统是否已挂载 cgroup2 文件系统创建 cgroup2 层次结构查看 cgroup2 开启的资源控制类型启用 cgroup2 资源控制设置 cgroup2 资源限制加入进程到 cgroup2 检查 cgroup2 文件系统是否已加载 cat /proc/filesystems | grep cgroup…...

历年上午真题笔记(2014年)

解析:A 网络设计的三层模型 : 接入层:Layer 2 Switching,最终用户被许可接入网络的点,用户通过接入层可以访问网络设备。 汇聚层:Layer2/3 Switching,访问层设备的汇聚点,负责汇接配线单元,利用二、三层技术实现工作组分段及网络故障的隔离,以免对核心层网络设备造…...

数据库软考知识

分布式数据库透明性 封锁 加上共享锁之后只能加共享锁&#xff0c;加上排他锁之后&#xff0c;啥锁都不能加。 分布式数据库特性 伪传递定理 SQL函数定义&#xff0c;有点冷 来了奥&#xff0c;更冷 存储过程 很重要&#xff0c;下午第二大题也是数据库...

学习笔记|配对样本均数T检验|SPSS常用的快捷键|规范表达|《小白爱上SPSS》课程:SPSS第六讲 | 配对样本均数T检验

目录 学习目的软件版本原始文档配对样本均数T检验一、实战案例二、案例解析三、统计策略四、SPSS操作1、正态性检验2、配对样本T检验 五、结果解读六、规范报告1、规范表格2、规范文字 划重点Tips:SPSS常用的快捷键 学习目的 SPSS第六讲 | 配对样本均数T检验 软件版本 IBM S…...

python内置模块smtplib、email 发送电子邮件

一、简介 smtplib 是 Python 的标准库之一&#xff0c;用于发送电子邮件。它提供了一个简单的接口来连接到 SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;服务器&#xff0c;并通过该服务器发送电子邮件。 email 是 Python 的标准库之一&#xff0c;用于处理电子…...

Qt使用QWebEngineView一些记录

1.关闭软件警告&#xff1a; Release of profile requested but WebEnginePage still not deleted. Expect troubles! 原因&#xff0c;系统退出关闭view&#xff0c;没有释放page。 解决办法&#xff1a;手动释放page 顺便把view也释放了。 Widget::~Widget() {updateIni…...

【2023.10.30练习】C语言-判断等式成立

计算机能力挑战初赛2020.20题 题目描述&#xff1a; 输入正整数A、B、C(0<A,B,C<10000),若用、-、*、/、%之一组成等式(即ABC&#xff0c;是上述运算符之一&#xff0c;)&#xff0c;则输出“YES”&#xff0c;否则输出“NO”&#xff1b; 输入&#xff1a; 第一行输入…...

Wpf 使用 Prism 实战开发Day03

一.实现左侧菜单绑定 效果图: 1.首先需要在项目中创建 mvvm 的架构模式 创建 Models &#xff0c;放置实体类。 实体类需要继承自Prism 框架的 BindableBase&#xff0c;目的是让实体类支持数据的动态变更! 例如: 系统导航菜单实体类 / <summary>/// 系统导航菜单实体类…...

JavaEE-cookie和session

本部分内容包括 cookie基本概念&#xff0c;sendcookies和getcookies代码&#xff1b; session基本概念&#xff0c;session实现登陆界面&#xff1b; 上述过程中涉及的代码如下&#xff1a; 1 import javax.servlet.ServletException; import javax.servlet.annotation.WebSe…...

Java设计模式之命令模式

目录 定义 结构 案例 优点 缺点 使用场景 JDK源码解析 Thread中start与run方法的区别 定义 将一个请求封装为一个对象&#xff0c;使发出请求的责任和执行请求的责任分割开。这样两者之间通过命令对象进行沟通&#xff0c;这样方便将命令对象进行存储、传递、调用、增…...

记录一段帮朋友写的代码,使用牛顿-拉夫逊方法解方程

要求 已知公式&#xff1a; t G A B F r B r 2 2 F A 2 B G A F ln ⁡ ( r − A ) C o n s t t\frac{GAB}{F}r\frac{Br^2}{2F}\frac{A^2BGA}{F}\ln (r-A)Const tFGAB​r2FBr2​FA2BGA​ln(r−A)Const 其中 t 的值为0-1000&#xff0c;每间隔25取一次值A2.12941E-10B0.…...

滑动窗口限流算法实现一

固定算法 原理&#xff1a;固定算法是将时间线分隔成固定大小的时间窗口&#xff0c;每个窗口都会有个计数器&#xff0c;用来记录窗口时间范围内的请求总数&#xff0c;如果窗口的请求总数达到最大限定值&#xff0c;会认定流量超限。比如将窗口大小设为1分钟&#xff0c;每分…...

简单明了!网关Gateway路由配置filters实现路径重写及对应正则表达式的解析

问题背景&#xff1a; 前端需要发送一个这样的请求&#xff0c;但出现404 首先解析请求的变化&#xff1a; http://www.51xuecheng.cn/api/checkcode/pic 1.请求先打在nginx&#xff0c;www.51xuecheng.cn/api/checkcode/pic部分匹配到了之后会转发给网关进行处理变成localho…...

EMQX内置Web管理控制台-Dashboard

一、Dashboard概述 EMQX Dashboard官网文档&#xff1a;https://docs.emqx.com/zh/enterprise/v5.1/dashboard/introduction.html 1、简介 EMQX 为用户提供了一个功能强大的内置管理控制台&#xff0c;即 EMQX Dashboard。通过这个控制台的 Web 界面&#xff0c;用户可以轻松监…...

计算机网络重点概念整理-第四章 网络层【期末复习|考研复习】

计算机网络复习系列文章传送门&#xff1a; 第一章 计算机网络概述 第二章 物理层 第三章 数据链路层 第四章 网络层 第五章 传输层 第六章 应用层 第七章 网络安全 计算机网络整理-简称&缩写 文章目录 前言四、网络层4.1 网络层功能4.1.1 电路交换、报文交换与分组交换4.1…...

数组转树形数据

const nodes [{ id: 3, name: 节点C, pid: 1 },{ id: 6, name: 节点F, pid: 3 },{ id: 0, name: root, pid: null },{ id: 1, name: 节点A, pid: 0 },{ id: 8, name: 节点H, pid: 4 },{ id: 4, name: 节点D, pid: 1 },{ id: 2, name: 节点B, pid: 0 },{ id: 5, name: 节点E, p…...

react动态插入样式

在开发组件过程中&#xff0c;偶尔需要动态的插入css&#xff0c;比如在在iframe中渲染组件后&#xff0c;iframe中是没有样式的&#xff0c;所以需要手动插入样式。 插入样式 通常是在useLayoutEffect中动态创建style标签 useLayoutEffect(() > {if (!ref.current) {cons…...

OkHttp网络框架深入理解-SSL握手与加密

OkHttp简介 由Square公司贡献的一个处理网络请求的开源项目&#xff0c;是目前Android使用最广泛的网络框架。从Android4.4开始HttpURLConnection的底层实现采用的是OkHttp。 特点&#xff1a; 支持HTTP/2并允许对同一主机的所有请求共享一个套接字通过连接池,减少了请求延迟…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...