【T】分治与倍增
分治,分而治之,其中最经典的便是二分
一、二分
一种经典而且非常好用的思想
将原问题对半转换成两个问题,子问题又继续转换成两个问题,许多子问题会很显然对答案没有关系,所以能讲原本O(n)的东西转化为O(logn)
但一般有个条件:单调
(之前讲的快速幂其实也用到的是这类思想)
经典讲法:猜数字
现在有个1-100的数字让你猜,每次会回答你猜的大了还是小了,尽量用最少次数猜出答案
二分实现:每次猜中间的数,然后缩小一般的区间重复操作
#include<bits/stdc++.h>
using namespace std;
int x,a;
int main()
{srand(time(0));x=rand()%100+1;//x为1-100printf("猜1-100的某个数\n");while(scanf("%d",&a)){if(a>x)printf("猜大了\n");if(a<x)printf("猜小了\n");if(a==x){printf("**对了**\n");return 0;}}
}
P2249 【深基13.例1】查找
这个数列是单调不减,所以可以直接用二分来找
#include<bits/stdc++.h>
using namespace std;
int n,m,a[1000005],x;
int main()
{scanf("%d%d",&n,&m);for(int i=1;i<=n;i++){scanf("%d",&a[i]);}for(int i=1;i<=m;i++){scanf("%d",&x);/*int ans=lower_bound(a+1,a+n+1,x)-a;//二分搜,注意-aif(x!=a[ans]) printf("-1 ");//没有,输出-1虽然可以用这个自带函数,但我们这里学的是思想,二分思想很重要*/int l=1,r=n,mid;while(l<r){mid=(l+r)>>1;if(x<=a[mid])r=mid;else l=mid+1;//等号可能要多思考一下,+1也要思考下}if(a[l]==x)printf("%d ",l);else printf("-1 ");}
}
P1024 [NOIP2001 提高组] 一元三次方程求解
熟悉一下实数版二分,有时判断的时候可能需要一个eps=1e-3用来辅助判断,因为实数精度 判断有时可能不太准确
#include<bits/stdc++.h>
using namespace std;
double a,b,c,d;
double f(double x)
{return a*x*x*x+b*x*x+c*x+d;
}int main()
{scanf("%lf%lf%lf%lf",&a,&b,&c,&d);for(int i=-100;i<100;i++){double l=i,r=i+1,mid;if(f(l)==0){printf("%.2lf ",l);continue;}if(f(l)*f(r)<0){while(r-l>=0.001){mid=(l+r)/2;if(f(mid)*f(l)<=0)r=mid;else l=mid;//printf("[%.2lf,%.2lf](%lf)\n",l,r,f(l));}printf("%.2lf ",l);}//l为答案}
}
P2678 跳石头
二分答案,再学会check对于mid是否成立
需要想到问题对于答案是个单增的,如果mid成立,则>mid也都成立
三分
一般处理单峰函数,不常用的板子
可以看到三分板子题解全在叫你用一堆什么随机算法,单峰函数也不常见,反而随机算法各种题说不定还能对
二、倍增
分治是把问题分开解决,而倍增是从成倍整合解决
ST表
预处理 2 0 2^0 20步转移,然后 2 1 − 2 20 2^1- 2^{20} 21−220步分别由之前步整合得到
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,m;
int bz[N][20],lg[N];
int main()
{scanf("%d%d",&n,&m);for(int i=1;i<=n;i++)scanf("%d",&bz[i][0]);for(int j=1;j<=18;j++)for(int i=1;i<=n;i++)if(i+(1<<(j-1))<=n)bz[i][j]=max(bz[i][j-1],bz[i+(1<<(j-1))][j-1]);//重点精髓语句int l,r;while(m--){scanf("%d%d",&l,&r);int p=log2(r-l+1);printf("%d\n",max(bz[l][p],bz[r-(1<<p)+1][p]));}
}
练习:P1816 忠诚
树上倍增->LCA最近公共祖先
等会建图啊,树相关啊,再回来看(讲),有空的可以先看看学学
#include<bits/stdc++.h>
using namespace std;
const int N=1000009;
int n,q,x,y,nex[N*2],first[N*2],to[N*2],tot=0;
int f[N][21],dep[N];
void Add(int u,int v) //建邻接表
{nex[++tot]=first[u];first[u]=tot;to[tot]=v;nex[++tot]=first[v];first[v]=tot;to[tot]=u;
}
void Init(int u,int father) //预处理,father 是 u 的父节点
{dep[u]=dep[father]+1;for(int i=0;i<=19;i++) //预处理出从某个点跳 2 的 i 次方到达的位置f[u][i+1]=f[f[u][i]][i];for(int e=first[u];e;e=nex[e]) //枚举每一条与 u 相连的点{int v=to[e];if(v==father) continue; //如果这条连向父节点,就 continue f[v][0]=u; //v 的父亲是 u Init(v,u); //递归}
}
int Lca(int x,int y) //找 LCA
{if(dep[x]<dep[y]) swap(x,y); //保证 x 深度更大for(int i=20;i>=0;i--) //使它们俩跳至深度相同{if(dep[f[x][i]]>=dep[y]) x=f[x][i];if(x==y) return x; //属于 x、y 在一条链上,y 是 x 和 y 的最近公共祖先}for(int i=20;i>=0;i--) //在 x 和 y 深度相同的情况下if(f[x][i]!=f[y][i]) //目标位置不相等,x 和 y 就往上爬{x=f[x][i]; //x 往上爬y=f[y][i]; //y 往上爬}return f[x][0]; //最后肯定一起跳到了 lca 的下面一个
}
int dist(int x,int y){return dep[x]+dep[y]-2*dep[Lca(x,y)];} //求距离
int main()
{scanf("%d",&n);scanf("%d",&q);int st;scanf("%d",&st);for(int i=1;i<n;i++){scanf("%d%d",&x,&y);Add(x,y);}Init(st,0); //预处理for(int i=1;i<=q;i++){scanf("%d%d",&x,&y);printf("%d\n",Lca(x,y));}return 0;
}
相关文章:
【T】分治与倍增
分治,分而治之,其中最经典的便是二分 一、二分 一种经典而且非常好用的思想 将原问题对半转换成两个问题,子问题又继续转换成两个问题,许多子问题会很显然对答案没有关系,所以能讲原本O(n)的东西转化为O(logn) 但一般…...
后门分析及示例
代码分析,关键字定位 传一个asp文件 输入账户错误会提示:非法登录; 逆向工程抓取这个关键字定位 查找代码里面的关键字,定位到关键字后把代码复制出来, 修改exec执行函数为msgbox消息弹出用gb2312方式保存成VBS文件.…...
Vue 的双向数据绑定是如何实现的?
目录 1. 响应式数据 2. v-model 指令 3. 实现原理 4. 总结 Vue.js 是一款流行的前端 JavaScript 框架,它以其强大的双向数据绑定能力而闻名。双向数据绑定使得数据在视图和模型之间保持同步,并且任一方的变化都会自动反映到另一方。那么,…...
Android环境变量macOS环境变量配置
关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 目录 一、导读二、概览macOS基础知识 三、设置环境变量3.1 终…...
设计模式(全23种)
1.前言 1.CUML类图 面向对象设计主要就是使用UML的类图,类图用于描述系统中所包含的类以及它们之间的相互关系,帮助人们简化对系统的理解,它是系统分析和设计阶段的重要产物,也是系统编码和测试的重要模型依据。下面基于C这门语…...
腾讯云轻量应用服务器“月流量”不够用怎么办?
腾讯云轻量应用服务器“月流量”不够用怎么办?超额部分支付流量费,价格为0.8元/GB。腾讯云轻量服务器月流量什么意思?月流量是指轻量服务器限制每月流量的意思,不能肆无忌惮地使用公网,流量超额需要另外支付流量费&…...
【esp32]VSCode-SPI控制OLED
根据Adafruit_GFX第三方库,其drawPixel方法由子类实现 代码:在OLED实现函数功能 先声明类 SPI库和Adafruit库、SSD1306 #include <Arduino.h> #include <SPI.h> #include <Adafruit_GFX.h> #include <Adafruit_SSD1306.h> …...
vue 的一些拦截
Vue.js 允许你在应用程序中进行路由和HTTP请求的拦截,以便在特定条件下执行操作或处理数据。以下是一些关于拦截的常见用例: 路由拦截: 你可以使用Vue Router来拦截路由导航。这通常用于权限控制,例如,当用户未登录时…...
iview表单提交验证特殊组件时需要注意的问题
使用iview的朋友们,对于表单验证肯定不陌生,通过validate来进行提交时的参数验证,一般来说,对于select或者input之列的表单组件,比较好判断, { required: true, message: ‘The name cannot be empty’, tr…...
OpenCV 画极线
from pylab import * import cv2from backend._gs_ import stereo_cameradef compute_epipole(F):""" 从基础矩阵 F 中计算右极点(可以使用 F.T 获得左极点)"""# 返回 F 的零空间(Fx0)U,S,V np.linalg.svd(F)e V[-1]return e/e[2]def plot_epi…...
Linux命令(109)之md5sum
linux命令之md5sum 1.md5sum介绍 linux命令md5sum是用来计算和校验文件的MD5值。 另外: md5sum是用来校验文件内容,与文件名是否相同无关 md5sum校验文件时,逐位校验,如果文件越大,校验所需时间就越长 2.md5sum用…...
JavaEE入门介绍,HTTP协议介绍,常用状态码及含义,服务器介绍(软件服务器、云服务器)
一、JavaEE入门 JavaEE(Java Enterprise Edition),Java企业版,是一个用于企业级web开发(不需要使用控制台)平台。最早由Sun公司定制并发布,后由Oracle负责维护。 JavaEE平台规范了在开发企业级w…...
FPGA时序分析与约束(7)——通过Tcl扩展SDC
一、概述 术语“Synopsys公司设计约束”(又名SDC,Synopsys Design Constraints)用于描述对时序、功率和面积的设计要求,是EDA工具中用于综合、STA和布局布线最常用的格式。本文介绍时序约束的历史概要和SDC的描述。 二、时序约束…...
C++面试——多线程详解
C11提供了语言层面上的多线程,包含在头文件<thread>中。它解决了跨平台的问题,提供了管理线程、保护共享数据、线程间同步操作、原子操作等类。C11 新标准中引入了5个头文件来支持多线程编程,如下图所示: 多进程与多线程 多…...
matlab 布尔莎七参数坐标转换模型
目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。爬虫自重,把自己当个人。 一、算法原理 算法原理与实现代码已在免费文章:布尔莎七参数坐标转换模型一文中给出,不想看付费文章直接跳转即可。 二、代码实现 clc; clear; close all; %% --...
Android---StartActivity启动过程
在手机桌面应用中点击某一个 icon 之后,最终是通过 startActivity 去打开某一个 Activity 页面。我们知道,Android 中的一个 APP 就相当于一个进程。所以,startActivity 操作中还需要判断,目标 Activity 的进程是否已经创建。如果…...
隐私计算python实现Paillier同态加密
1.基本概念 Paillier同态加密是一种公钥加密方案,具有同态加密的特性。它由Pascal Paillier于1999年提出。 Paillier同态加密基于数论问题,其安全性基于大整数分解问题和离散对数问题的困难性。该方案可以用于保护隐私数据,同时支持在加密状态…...
代码随想录打卡第五十五天|● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组
300.最长递增子序列 **题目:**给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0…...
C# 创建Oceanbase ODBC数据源 DSN
需要管理员权限打开VS,因为只有管理员权限可以修改注册表 using Microsoft.Win32; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Data.Odbc; using System.Diagnostics; using System.Drawing;…...
C++ 常用函数汇总#include<algorithm>(3万字总结)
文章目录 1. 排序(Sorting)1.1 sort(first, last):对指定范围内的元素进行升序排序1.2 stable_sort(first, last):在保持相等元素的相对顺序的情况下对指定范围内的元素进行排序1.3 partial_sort(first, middle, last):对范围内的元素进行部分排序,使得前部分是最小的,但…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
