当前位置: 首页 > news >正文

SQL SERVER 表分区

1. 概要说明

SQL SERVER的表分区功能是为了将一个大表(表中含有非常多条数据)的数据根据某条件(仅限该表的主键)拆分成多个文件存放,以提高查询数据时的效率。创建表分区的主要步骤是

1、确定需要以哪一个字段作为分区条件;

2、拆分成多少个文件保存该表;

3、分区函数(拆分条件);

4、分区方案(按拆分函数拆分后需要对应到哪些文件组中去)。

不是企业版的sql server不支持分区;

参考:SQL SERVER 表分区实施步骤_sqlserver表分区步骤_Henry_Wu001的博客-CSDN博客

sql server 分区表 性能 sqlserver分区表实战_mob6454cc77db30的技术博客_51CTO博客

(0.1)SQL Server分区介绍
在SQL Server中,数据库的所有表和索引都视为已分区表和索引,默认这些表和索引值包含一个分区;也就是说表或索引至少包含一个分区。SQL Server中数据是按水平方式分区,是多行数据映射到单个分区。已经分区的表或者索引,在执行查询或者更新时,将被看作为单个逻辑实体;简单说来利用分区将一个表数据分多个表来存储,对于大数据量的表,将表分成多块查询,若只查询某个分区数据将降低消耗提高效率。需要注意的是单个索引或者表的分区必须位于一个数据库中。在使用大量数据管理时,SQL Server使用分区可以快速访问数据子集,减少io提高效率。

同时不同分区可以存放在不同文件组里,文件组若能存放在不同逻辑磁盘上,则可以实现io的并发使用以提高效率

(0.2)SQL Server分区创建概述
创建分区函数:确定分区方式和界点
创建分区架构:将分区函数指定的分区映射到文件组
新建分区表
索引分区知识详解
(0.3)SQL Server分区管理概述
拆分分区(split)
合并分区(merge)
切换分区(switch)
$PARTION

【1】创建表分区
未分区的表,相当于只有一个分区,只能存储在一个FileGroup中;对表进行分区后,每一个分区都存储在一个FileGroup,或分布式存储在不同的FileGroup中。对表进行分区的过程,实际上是将逻辑上完整的一个表,按照特定的字段拆分成多个分区,分散到相同或不同的FileGroup中,每一个部分叫做表的一个分区(Partition),一个分区实际上是一个独立的,内部的物理表。也就是说,分区表在逻辑上是一个表,而在物理上是多个完全独立的表。

分区(Partition)的特性是:

每一个Partition在FileGroup中都独立存储,分区之间是相互独立的
每一个parititon都属于唯一的表对象,
每一个Partition 都有唯一的ID,
每一个Partition都有一个编号(Partition Number),同一个表的分区编号是唯一的,从1开始递增;

Step0,准备工作:构建文件组和文件
登录后复制 
--添加文件组
alter database testSplit add filegroup db_fg1

--添加文件到文件组
alter database testSplit add file 
(name=N'ById1',filename=N'J:\Work\数据库\data\ById1.ndf',size=5Mb,filegrowth=5mb)
to filegroup db_fg1
 

一,新建分区表分为三步

Step1, 创建分区函数
要先创建函数

分区函数的作用是提供分区字段的类型和分区的边界值,进而决定分区的数量

CREATE PARTITION FUNCTION [pf_int](int) 
AS RANGE LEFT 
FOR VALUES (10, 20)
 

分区函数pf_int 的含义是按照int类型分区,分区的边界值是10,20,left表示边界值属于左边界。两个边界值能够分成三个分区,别是(-infinite,10],(10,20],(20,+infinite)。

Step2,创建分区架构(Scheme)
再创建架构、应用函数

分区架构的作用是为Parition分配FileGroup,在逻辑上,Partition Scheme和FileGroup是等价的,都是数据存储的逻辑空间,只不过Partition Scheme指定的是多个FileGroup。

CREATE PARTITION SCHEME [ps_int] 
AS PARTITION [pf_int] 
TO ([PRIMARY], [db_fg1], [db_fg1])
 

不管是在不同的FileGroup中,还是在相同的FileGroup中,分区都是独立存储的。

分区scheme的所有分区都存储到相同的文件组中:

CREATE PARTITION SCHEME [ps_int] 
AS PARTITION [pf_int] 
ALL TO ([PRIMARY])

 

Step3,新建分区表
新建分区表,实际上是在创建Table时,使用on子句指定数据存储的逻辑位置是分区架构(Partition Scheme)

create table dbo.dt_test
(
    ID int,
    code int
)
on [ps_int] (id)
 

查看分区编号(Partition Number)
分区编号(Partition Number) 从1开始,从最左边的分区向右依次递增+1,边界值最小的分区编号是1,

例如,对于以下分区函数:

CREATE PARTITION FUNCTION pf_int_Left (int)
AS 
RANGE LEFT 
FOR VALUES (10,20);

分区的边界值(Boundary Value)是10,20, 边界值属于左边界(Range Left),该分区函数 pf_int_Left 划分了三个分区(Partition),范围区间是:(-infinite,10], (10,20], (20,+infinite),(小括号表示不包括边界值,中括号表示包括边界值),系统分配的分区编号分别是:1,2,3。用户可以通过使用$Partition函数 查看分区编号,调用语法格式是:
$Partition.Partition_Function(Partition_Column_Value)

例如,通过$Partition函数 查看分区列值为21时,该行数据所在的分区编号:

select $Partition.pf_int_left(21)

由于分区列值是21, 属于范围(20,+infinite),因此分区编号是:3。

【2】对现有表分区
在SQL Server中,普通表可以转化为分区表,而分区表不能转化为普通表,普通表转化成分区表的过程是不可逆的,将普通表转化为分区表的方法是:

在分区架构(Partition Scheme)上创建聚集索引,就是说,将聚集索引分区。

数据库中已有分区函数(partition function) 和分区架构(Partition scheme):

-- create parition function
CREATE PARTITION FUNCTION pf_int_Left (int)
AS RANGE LEFT 
FOR VALUES (10,20);

--determine partition number
select $Partition.pf_int_left(21)

CREATE PARTITION SCHEME PS_int_Left
AS PARTITION pf_int_Left
TO ([primary], [primary], [primary]);
如果在普通表上存在聚集索引,并且聚集索引列是分区列,那么重建聚集索引,就能使表转化成分区表。聚集索引的创建有两种方式:使用clustered 约束(primary key 或 unique约束)创建,使用 create clustered index 创建。

【2.1】在分区架构(Partition Scheme)上,创建聚集索引
如果聚集索引是使用 create clustered index 创建的,并且聚集索引列就是分区列,使普通表转换成分区表的方法是:删除所有的 nonclustered index,在partition scheme上重建clustered index

1,表dbo.dt_partition的聚集索引是使用 create clustered index 创建的,

create table dbo.dt_partition
(
ID int,
Code int
)

create clustered index cix_dt_partition_ID 
on dbo.dt_partition(ID)

2,从系统表Partition中,查看该表的分区只有一个

select *
from sys.partitions p 
where p.object_id=object_id(N'dbo.dt_partition',N'U')

3,使用partition scheme,重建表的聚集索引

create clustered index cix_dt_partition_ID 
on dbo.dt_partition(ID)
with(drop_existing=on)
on PS_int_Left(ID)

4,重建聚集索引之后,表的分区有三个

select *
from sys.partitions p 
where p.object_id=object_id(N'dbo.dt_partition',N'U')

【2.4】普通表=》分区表,不可逆
普通表转化成分区表的过程是不可逆的,普通表能够转化成分区表,而分区表不能转化成普通表。

普通表存储的Location是FileGroup,分区表存储的Location是Partition Scheme,在SQL Server中,存储表数据的Location叫做Data Space。

通过在Partition Scheme上创建Clustered Index ,能够将已经存在的普通表转化成partition table,但是,将Clustered index删除,表仍然是分区表,转化过程(将普通表转换成分区表)是不可逆的;

一个Partition Table 是不能转化成普通表的,即使通过合并分区,使Partiton Table 只存在一个Partition,这个表的仍然是Partition Table,这个Table的Data Space 是Partition Scheme,而不会转化成File Group。

从 sys.data_spaces 中查看Data Space ,共有两种类型,分别是FG 和 PS。

FG是File Group,意味着数据表的数据存储在File Group分配的存储空间,一个Table 只能存在于一个FileGroup中。PS 是Partition Scheme,意味着将数据分布式存储在不同的File Groups中,存储数据的File Group是根据Partition column值的范围来分配的。对于分区表,SQL Server从指定的File Group分配存储空间,虽然一个Table只能指定一个Partition Scheme,但是其数据却分布在多个File Groups中,这些File Groups由Partition Scheme指定,可以相同,也可以不同。
【3】分区切换
在SQL Server中,对超级大表做数据归档,使用select和delete命令是十分耗费CPU时间和Disk空间的;

SQL Server必须记录相应数量的事务日志,而使用switch操作归档分区表的老数据,十分高效,switch操作不会移动数据,只是做元数据的置换;

因此,执行分区切换操作的时间是非常短暂的,几乎是瞬间完成,但是,在做分区切换时,源表和靶表必须满足一定的条件:

表的结构相同:列的数据类型,可空性(nullability)相同;
索引结构必须相同:索引键的结构,聚集性,唯一性,列的可空性必须相同;
主键约束:如果源表存在主键约束,那么靶表必须创建等价的主键约束;
唯一约束:唯一约束可以使用唯一索引来实现;
索引键的结构:索引键的顺序,包含列,唯一性,聚集性都必须相同;
存储的数据空间(data space)相同:源表和靶表必须创建在相同的FileGroup或Partition Scheme上;
分区切换是将源表中的一个分区,切换到靶表(target_table)中,靶表可以是分区表,也可以不是分区表,switch操作的语法是:

ALTER TABLE schema_name . table_name 
SWITCH [ PARTITION source_partition_number_expression ]
TO target_table  [ PARTITION target_partition_number_expression ]

【3.2】源表和目标表的结构必须相同
1,数据列的可空性必须相同(nullability)

2,数据列的数据类型必须相同

1,数据列的可空性必须相同(nullability)

【3.5】交换分区:总结
在执行分区操作时,要求源表和靶表必须满足:

表的结构相同:列的数据类型,可空性(nullability)相同;
索引结构必须相同:索引键的结构,聚集性,唯一性,列的可空性必须相同;
主键约束:如果源表存在主键约束,那么靶表必须创建等价的主键约束;
唯一约束:唯一约束可以使用唯一索引来实现;
索引键的结构:索引键的顺序,包含列,唯一性,聚集性都必须相同;
存储的数据空间(data space)相同:源表和靶表必须创建在相同的FileGroup或Partition Scheme上;
 

(1)时间分区
代码:现有表转成分区表

--  创建测试数据,测试表  part_test
use test1;
if object_id('part_test' ) is not null
    drop table part_test;
;with t1 as (
select 1 as id,1 as num ,cast('2021-01-01 00:01:01' as datetime) as day_info
union all
select id+1 ,num+1 ,dateadd(day,1,day_info) from t1
where id<=1000000
)
select * into part_test from t1  option(maxrecursion 0)

-- 分区函数
CREATE PARTITION FUNCTION [pf_datetime](datetime) 
AS RANGE LEFT for values(
'2021-01-01' ,
'2022-01-01' ,
'2023-01-01' ,
'2024-01-01' ,
'2025-01-01' ,
'2026-01-01' ,
'2027-01-01' ,
'2028-01-01' ,
'2029-01-01' ,
'2030-01-01' ,
'2031-01-01' ,
'2032-01-01' ,
'2033-01-01' ,
'2034-01-01' ,
'2035-01-01' ,
'2036-01-01' ,
'2037-01-01' ,
'2038-01-01' ,
'2039-01-01' ,
'2040-01-01' ,
'2041-01-01' ,
'2042-01-01' ,
'2043-01-01' ,
'2044-01-01' ,
'2045-01-01' ,
'2046-01-01' ,
'2047-01-01' ,
'2048-01-01' 
);

-- 分区架构 
CREATE PARTITION SCHEME [ps_datetime] 
AS PARTITION [pf_datetime] 
ALL TO ([PRIMARY])


-- 创建聚集索引和耳机索引
create clustered index PIX_id on part_test(id)
create index ix_dayinfo on part_test(day_info)

-- 查看是否还有二级索引 
-- sp_help part_test

-- 删掉二级索引,重建聚集索引并应用分区架构
drop index ix_dayinfo on  part_test

-- 重建聚集索引=》现有表改成分区表,分区列必须是在主键内,比如这里的 day_info 就必须在主键内
create clustered index PIX_id
on dbo.part_test(ID,day_info)
with(drop_existing=on)
on [ps_datetime](day_info)

--创建索引对齐分区索引
create index id_p_num on part_test(num) on [ps_datetime](day_info)
create index id_p_dayinfo on part_test(day_info) on [ps_datetime](day_info)

select * from part_test where day_info='2021-01-11 00:01:01.000'

-- 拆分分区(最末尾)
-- 在分区函数中新增一个边界值,即可将一个分区变为2个。一般边界值默认是 left ;放到最前或者最后来拆分就是新增分区
alter partition function pf_datetime()
split range('2049-01-01')  --将第二个分区拆为2个分区

-- 归档到历史表
alter table bigorder switch partition 1 to <同表结构、默认值、null约束一致的表>
 

相关文章:

SQL SERVER 表分区

1. 概要说明 SQL SERVER的表分区功能是为了将一个大表&#xff08;表中含有非常多条数据&#xff09;的数据根据某条件&#xff08;仅限该表的主键&#xff09;拆分成多个文件存放&#xff0c;以提高查询数据时的效率。创建表分区的主要步骤是 1、确定需要以哪一个字段作为分…...

从零开始学习PX4源码0(固件下载及编译)

目录 文章目录目录摘要1.重点学习网址2.固件下载1.下载最新版本固件2.下载之前版本固件 摘要 本节主要记录从零开始学习PX4源码1(固件下载)的过程,欢迎批评指正!!! 下载固件主要分为两个版本,之前稳定版本和最新官网发布版本,为什么要下载两个版本,主要是说明两个版本有…...

centos格式化硬盘/u盘的分区为NTFS格式

centos7好像不支持ntfs&#xff1f; 对报这个&#xff0c;ntfs not configured in kernel。 安装了ntfs-3g就可以访问了。 插上u盘查看u盘设备 #查看硬件设备及挂载目录 df -h #查看硬件设备&#xff08;包括未挂载的&#xff09; fdisk -l卸载外部设备 umount /dev/sdbxxx …...

【工具】FreePic2PDF+PdgCntEditor|PDF批量添加书签(Windows)

这俩软件都不大&#xff0c;比较便携。 FreePic2PDF&#xff1a; 我下载的来源&#xff1a;https://www.52pojie.cn/thread-1317140-1-1.html&#xff08;包含下载链接https://www.lanzoui.com/it4x6j4hbvc&#xff09;下载的结果&#xff1a;https://pan.baidu.com/s/1r8n5G42…...

中移链浏览器简介

&#xff08;1&#xff09;简介 生活中&#xff0c;常用的互联网浏览器&#xff0c;是用来检索、展示以及传递Web信息资源的应用程序。用浏览器进行搜索&#xff0c;可以快速查找到目标信息。而对于区块链而言&#xff0c;也有区块链浏览器。 区块链浏览器&#xff0c;是指为用…...

深入浅出排序算法之计数排序

目录 1. 原理 2. 代码实现 3. 性能分析 1. 原理 首先看一个题目&#xff0c;有n个数&#xff0c;取值范围是 0~n&#xff0c;写出一个排序算法&#xff0c;要求时间复杂度和空间复杂度都是O(n)的。 为了达到这种效果&#xff0c;这一篇将会介绍一种不基于比较的排序方法。这…...

大坝水库安全监测终端MCU,智能化管理的新篇章!

我国目前拥有超过9.8万座水库大坝&#xff0c;其中超过95%为土石坝&#xff0c;这些大坝主要是在上世纪80年代以前建造的。这些水库大坝在保障防洪、发电、供水、灌溉等方面发挥了巨大的作用&#xff0c;但是同时也存在一定的安全风险&#xff0c;比如坝体结构破损、坝基渗漏、…...

LeetCode 面试题 16.09. 运算

文章目录 一、题目二、C# 题解 一、题目 请实现整数数字的乘法、减法和除法运算&#xff0c;运算结果均为整数数字&#xff0c;程序中只允许使用加法运算符和逻辑运算符&#xff0c;允许程序中出现正负常数&#xff0c;不允许使用位运算。 你的实现应该支持如下操作&#xff1a…...

spring-代理模式

代理模式 一、概念1.静态代理2.动态代理 一、概念 ①介绍 二十三种设计模式中的一种&#xff0c;属于结构型模式。它的作用就是通过提供一个代理类&#xff0c;让我们在调用目标 方法的时候&#xff0c;不再是直接对目标方法进行调用&#xff0c;而是通过代理类间接调用。让不…...

我用好说 AI 做二次元人设

你有没有想过自己做一部原创作品&#xff1f; 就像开发《星露谷物语》那样&#xff0c;自己把控作品的 角色、故事、载体、宣传 等方方面面&#xff0c;让 idea 不再只是灵光一闪。 以前是 “万事开头难”&#xff0c;可能第一步都举步维艰。但现在有了 AI 就不同了&#xff…...

付费阅读微信小程序源码/小程序和公众号双版本-多种付费模式前后端+独立源码

源码简介&#xff1a; 付费阅读微信小程序源码&#xff0c;这个是小程序和公众号双版本&#xff0c;它支持多种付费模式前后端独立源码。能够支持免费观看部分文字、视频和音频内容&#xff0c;而其他部分则需要付费才能继续观看。这样更方便变现。 这是付费阅读微信小程序合…...

ref、reactive、toRef、toRefs

ref 作用&#xff1a;定义一个响应式数据 语法&#xff1a;const xxx ref(initValue) 创建一个包含响应式数据的引用对象 js中操作数据&#xff1a;xxx.value 模板中读取数据&#xff1a;不需要.value,直接<div>{{xxx}}</div> 接收的数据&#xff1a;基本类型、对…...

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-如何用自己数据微调ChatGLM2模型训练 目录 GPT实战系列-如何用自己数据微调ChatGLM2模型训练1、训练数据广告文案生成模型训练和测试数据组织&#xff1a; 2、训练脚本3、执行训练调整运行 4、问题解决问题一问题二问题三问题四 1、训练数据 广告文案生成模型 输…...

【数电知识点_2023.10.28】

数制与码制 十进制转二进制 8 bits 1 Byte 2|12 //121100自下而上 商为0为止 2|_ 6_…0 2|_ 3_…0 2|1…1 0…1 0.375 //0.3750.011自上而下 小数点为0为止 x 2 ———— 0.75…0 x 2 ———— 1.5…1 x 2 ———— 1…1 BCD码&#xff1a;每4位二进制表示一位十进制 8421…...

spring boot配置ssl(多cer格式)保姆级教程

1. 准备cer格式的证书&#xff1b; 2. 合并cer证书并转化成jks格式的证书 为啥有这一步&#xff0c;因为cer证书配置在spring boot项目中&#xff0c;项目启动不起来。如果有大佬想指导一下可以给我留言&#xff0c;在此先谢过大佬。 1&#xff09;先创建一个jks格式的证…...

第2篇 机器学习基础 —(4)k-means聚类算法

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。聚类算法是一种无监督学习方法&#xff0c;它将数据集中的对象分成若干个组或者簇&#xff0c;使得同一组内的对象相似度较高&#xff0c;不同组之间的对象相似度较低。聚类算法可以用于数据挖掘、图像分割、文本分类等领域…...

【Python爬虫+可视化】解析小破站热门视频,看看播放量为啥会这么高!评论、弹幕主要围绕什么展开

大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 环境使用 Python 3.8 Pycharm 模块使用 import requests import csv import datetime import hashlib import time 一. 数据来源分析 明确需求 明确采集网站以及数…...

Mac电脑专业三维模型展UV贴图编辑工具RizomUV RS + VS 2023有哪些特点

RizomUV RS VS是一款功能强大的UV展开软件&#xff0c;用于在三维模型上创建和编辑UV贴图。它具有直观的用户界面和丰富的功能&#xff0c;能够帮助艺术家和设计师更高效地进行UV展开工作。 RizomUV RS VS支持多种模型格式&#xff0c;包括OBJ、FBX、DAE和3DS等&#xff0c;使…...

Linux文件描述符和文件指针互转

本文研究的主要是Linux中文件描述符fd与文件指针FILE*互相转换的相关内容&#xff0c;具体介绍如下。 简介 1.文件描述符fd的定义: 文件描述符在形式上是一个非负整数。实际上&#xff0c;它是一个索引值&#xff0c;指向内核为每一个进程所维护的该进程打开文件的记录表。当…...

C++11线程

C11线程 创建线程 创建线程需要包含头文件<thread>&#xff0c;使用线程类std::thread 构造函数 默认构造函数 thread() noexcept; 默认构造函数&#xff0c;构造一个线程对象&#xff0c;但它不会启动任何实际的线程执行。 任务函数构造函数 template< class Fun…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...