当前位置: 首页 > news >正文

vantUI(Tabbar标签页)浏览器返回上一页的失效问题

在开发中遇到这样一个问题,由页面1切换到页面2,再点击浏览器的回退,无法回退到页面1。

开始以为是路由配置的有问题,但是子页面可以正常回退,因为replace只是替换路由,而不会往history栈中记录路由,所以当切换到页面2的时候,历史的路由里已经没有页面1了,所以无法回去。

原代码如下:

<van-tabbar route><van-tabbar-item replace  to="/it" icon="todo-list-o">页面1</van-tabbar-item><van-tabbar-item replace  to="/al" icon="bulb-o">页面2</van-tabbar-item>
</van-tabbar>

修改成如下代码即可正常回退。

<van-tabbar route><van-tabbar-item  to="/it" icon="todo-list-o">页面1</van-tabbar-item><van-tabbar-item  to="/al" icon="bulb-o">页面2</van-tabbar-item>
</van-tabbar>

补充知识:

 this.$router.to, this.$router.replace

  • router.push  方法会向 history 栈添加一个新的记录,所以,当用户点击浏览器后退按钮时,会回到之前的 URL。
  • router.replace  在导航时不会向 history 添加新记录,而是取代了当前的条目

希望可以帮到你~

相关文章:

vantUI(Tabbar标签页)浏览器返回上一页的失效问题

在开发中遇到这样一个问题&#xff0c;由页面1切换到页面2&#xff0c;再点击浏览器的回退&#xff0c;无法回退到页面1。 开始以为是路由配置的有问题&#xff0c;但是子页面可以正常回退&#xff0c;因为replace只是替换路由&#xff0c;而不会往history栈中记录路由&#x…...

【算法】Prim算法(求最小生成树)

题目 给定一个 n 个点 m 条边的无向图&#xff0c;图中可能存在重边和自环&#xff0c;边权可能为负数。 求最小生成树的树边权重之和&#xff0c;如果最小生成树不存在则输出 impossible。 给定一张边带权的无向图 G(V,E)&#xff0c;其中 V 表示图中点的集合&#xff0c;E…...

go语言,yaml实现简单的workflow工作流

目录 1.创建一个yaml文件&#xff0c;名字可以是student.yaml 2.创建go文件测试 3.执行结果 本文章内容&#xff0c;只是一个简单的案例&#xff0c;但足够映射到一个大的项目中。 工作流作用&#xff1a;工作流的作用就是通过yaml配置文件&#xff0c;将关于本工作流的一个…...

BaiduMallServcie

说明 本文档指导业务开发步骤 BaiduMallServcie 说明一. 登录业务1.1 数据库设计1.1.1 管理员表1.1.2 角色表1.1.3 关联表 管理员表与角色表关联1.1.4 权限表1.1.5 关联表 角色表与权限表关联1.1.6 管理员登录日志表1.1.7 查询权限示例1.2 添加用户一. 登录业务 1.1 数据库设…...

vue3+jsx+antd的插槽写法之一

如果在jsx里面直接这样按照官方的写法是会报错的 正确写法是&#xff1a;...

Shell 学习之 if 命令

1. 执行流程 在 Shell 脚本中&#xff0c;if 是一个 控制流语句&#xff0c;用于进行条件判断&#xff0c;根据条件的结果执行相应的操作。 # 首先&#xff0c;Shell 会检查表达式 condition 返回的 boolean 值。 # 如果 condition 的值为真&#xff0c;则执行 then 代码块&a…...

android 同步 服务器 时间

要将 Android 设备与服务器同步时间&#xff0c;可以通过以下两种方式实现&#xff1a; NTP 协议同步时间 NTP&#xff08;Network Time Protocol&#xff09;是一种网络协议&#xff0c;用于同步计算机的时间。Android 设备可以使用 NTP 协议来同步服务器时间。 Android 应…...

10、电路综合-基于简化实频的宽带匹配电路设计方法

10、电路综合-基于简化实频的宽带匹配电路设计方法 网络综合和简化实频理论学习概述中的1-9介绍了SRFT的一些基本概念和实验方法&#xff0c;终于走到了SRFT的另一个究极用途&#xff0c;宽带匹配电路的设计。 1、之前的一些回顾与总结 之前也给出了一些电路综合的案例&…...

N-130基于springboot,vue校园社团管理系统

开发工具&#xff1a;IDEA 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 系统分前后台&#xff0c;项目采用前后端分离 前端技术&#xff1a;vueelementUI 服务端技术&#xff1a;springbootmybatis-plus 本系…...

Syntax Error: TypeError: this.getOptions is not a function的解决(Vue)

报错信息&#xff1a; TypeError: this.getOptions is not a function 这个是在运行项目是遇到的问题 这个报错是类型错误&#xff0c;this.getOptions 不是一个函数 。这个错误一般就是less-loader库里的错误。 主要是less-loader版本太高&#xff0c;不兼容this.getOptions…...

使用 kube-downscaler 降低Kubernetes集群成本

新钛云服已累计为您分享772篇技术干货 介绍 Kube-downscaler 是一款开源工具&#xff0c;允许用户定义 Kubernetes 中 pod 资源自动缩减的时间。这有助于通过减少非高峰时段的资源使用量来降低基础设施成本。 在本文中&#xff0c;我们将详细介绍 kube-downscaler 的功能、安装…...

LeetCode热题100——哈希表

哈希表 1.两数之和2.字母异位词分组3.最长连续序列 1.两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。可以按任意顺序返回答案。 // 题解思路&#xff1a;使用哈…...

Kubeadm

目录 绪论&#xff1a;实验步骤 1、环境准备 2、所有节点安装docker 3、所有节点安装kubeadm&#xff0c;kubelet和kubectl 4、部署K8S集群 5、部署 Dashboard 6、安装Harbor私有仓库 master&#xff08;2C/4G&#xff0c;cpu核心数要求大于2&#xff09; 192.168.…...

【Overload游戏引擎细节分析】PBR材质Shader---完结篇

PBR基于物理的渲染可以实现更加真实的效果&#xff0c;其Shader值得分析一下。但PBR需要较多的基础知识&#xff0c;不适合不会OpenGL的朋友。 一、PBR理论 PBR指基于物理的渲染&#xff0c;其理论较多&#xff0c;需要的基础知识也较多&#xff0c;我在这就不再写一遍了&…...

C++设计模式_18_State 状态模式

State和Memento被归为“状态变化”模式。 文章目录 1. “状态变化”模式1.1 典型模式 2. 动机 (Motivation)3. 代码演示State 状态模式3.1 常规方式3.2 State 状态模式 4. 模式定义5. 结构( Structure )6. 要点总结7. 其他参考 1. “状态变化”模式 在组件构建过程中&#xf…...

详解final, abstract, interface关键字

一.final关键字 1.final关键字介绍 ——final关键字可以去修饰类、方法、属性和局部变量 2.final关键字的作用 1&#xff09;final修饰类&#xff0c;这个类不能被其他类继承 2&#xff09;final修饰方法&#xff0c;方法不能被重写 3&#xff09;final修饰属性&#xff0c;属…...

统计特殊四元组

题记&#xff1a; 给你一个 下标从 0 开始 的整数数组 nums &#xff0c;返回满足下述条件的 不同 四元组 (a, b, c, d) 的 数目 &#xff1a; nums[a] nums[b] nums[c] nums[d] &#xff0c;且a < b < c < d 示例 1&#xff1a; 输入&#xff1a; nums [1,2,3…...

腾讯云轻量应用服务器“镜像”怎么选择合适?

腾讯云轻量应用服务器镜像怎么选择&#xff1f;如果是用来搭建网站可以选择宝塔Linux面板腾讯云专享版&#xff0c;镜像系统根据实际使用来选择&#xff0c;腾讯云百科txybk.com来详细说下腾讯云轻量应用服务器镜像的选择方法&#xff1a; 腾讯云轻量应用服务器镜像选择 轻量…...

Ruby模块和程序组织

和类一样&#xff0c;模块是一组方法和常量的集合。 和类不同&#xff0c;模块没有实例&#xff0c;取而代之的是可以将特殊模块的功能添加到一个类或者指定对象之中。 Class类是Module类的一个子类&#xff0c;因此每一个类对象也是一个模块对象 一、模块创建和基础应用 编写…...

14、SpringCloud -- WebSocket 实时通知用户

目录 实时通知用户需求:代码:前端:后端:WebSocket创建 websocket-server 服务添加依赖:配置 yml 和 启动类:前端:后端代码:注意:测试:总结:实时通知用户 需求: 用户订单秒杀成功之后,对用户进行秒杀成功通知。 弹出个提示框来提示。 代码: 前端:...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...