当前位置: 首页 > news >正文

单变量回归问题

单变量回归问题

对于某房价问题,x为房屋大小,h即为预估房价,模型公式为:
hθ(x)=θ0+θ1xh_{\theta}(x)=\theta_{0}+\theta_{1}x hθ(x)=θ0+θ1x
要利用训练集拟合该公式(主要是计算θ0、θ1\theta_{0}、\theta_{1}θ0θ1),需要代价函数(计算当前模型和测试集数据的误差),
J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2J(\theta_{0},\theta_{1})=\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
当代价函数得到最小值时,此时拟合的公式最好。一般利用梯度下降法来得到代价函数的局部(全局)最优解。批量梯度下降的公式为
θj:=θj−α∂∂θjJ(θ0,θ1)(forj=0andj=1)\theta_{j}:=\theta_{j}-\alpha\frac{\partial }{\partial \theta_{j}}J(\theta_{0},\theta_{1}) (for \quad j=0\quad and \quad j=1) θj:=θjαθjJ(θ0,θ1)(forj=0andj=1)

∂∂θjJ(θ0,θ1)=∂∂θj(12m∑i=1m(hθ(x(i))−y(i))2)\frac{\partial }{\partial \theta_{j}}J(\theta_{0},\theta_{1})=\frac{\partial }{\partial \theta_{j}}(\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2}) θjJ(θ0,θ1)=θj(2m1i=1m(hθ(x(i))y(i))2)

j=0时,∂∂θ0J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))j=0时,\frac{\partial }{\partial \theta_{0}}J(\theta_{0},\theta_{1})=\frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})} j=0时,θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))

j=1时,∂∂θ1J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))⋅x(i)j=1时,\frac{\partial }{\partial \theta_{1}}J(\theta_{0},\theta_{1})=\frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})\cdot x^{(i)}} j=1时,θ1J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))x(i)

α\alphaα为学习率,决定沿着代价函数下降程度最大的方向向下的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。

如果α\alphaα太小了,即我的学习速率太小,需要很多步才能到达最低点,可能会很慢;
如果α\alphaα太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛。

在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没有必要再另外减小α\alphaα

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qARHfSRE-1677383475783)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230222172604462.png)]

相关文章:

单变量回归问题

单变量回归问题 对于某房价问题,x为房屋大小,h即为预估房价,模型公式为: hθ(x)θ0θ1xh_{\theta}(x)\theta_{0}\theta_{1}x hθ​(x)θ0​θ1​x 要利用训练集拟合该公式(主要是计算θ0、θ1\theta_{0}、\theta_{1}θ…...

ubuntu/linux系统知识(36)linux网卡命名规则

文章目录背景命名规范系统默认命名规则优势背景 很久以前Linux 操作系统的网卡设备的传统命名方式是 eth0、eth1、eth2等,属于biosdevname 命名规范。 服务器通常有多块网卡,有板载集成的,同时也有插在PCIe插槽的。Linux系统的命名原来是et…...

java的一些冷知识

接口并没有继承Object类首先接口是一种特殊的类,理由就是将其编译后是一个class文件大家都知道java类都继承自Object,但是接口其实是并没有继承Object类的 可以自己写代码测试: 获取接口类的class对象后遍历它的methods,可以发现是不存在Obje…...

java代理模式

代理模式 为什么要学习代理模式?因为这是SpringAOP的底层! 【SpringAOP和SpingMVC}】 代理模式的分类: 静态代理 动态代理 代理就像这里的中介,帮助你去做向房东租房,你不能直接解出房东,而房东和中介…...

JUC包:CountDownLatch源码+实例讲解

1 缘起 有一次听到同事谈及AQS时,我有很多点懵, 只知道入队和出队,CLH(Craig,Landin and Hagersten)锁,并不了解AQS的应用, 同时结合之前遇到的多线程等待应用场景,发现…...

Log4j2基本使用

文章目录1. Log4j2入门2. Log4j2配置3. Log4j2异步日志4. Log4j2的性能Apache Log4j 2是对Log4j的升级版,参考了logback的一些优秀的设计,并且修复了一些问题,因此带 来了一些重大的提升,主要有: 异常处理&#xff0c…...

A2L在CAN FD总线的使用

文章目录 前言CAN时间参数BTL CyclesTime Quantum时间份额SWJ同步跳转宽度波特率计算采样点计算CAN FD的第二采样点SSP推荐配置A2L配置总结前言 A2L作为XCP标定协议的载体,包括了总线信息的定义。本文介绍如何将基于CAN总线的A2L扩展为支持CAN-FD的A2L CAN时间参数 在介绍配…...

Android JetPack之启动优化StartUp初始化组件的详解和使用

一、背景 先看一下Android系统架构图 在Android设备中,设备先通电(PowerManager),然后加载内核层,内核走完,开始检查硬件,以及为硬件提供的公开接口,然后进入到库的加载。库挂载后开…...

[11]云计算|简答题|案例分析|云交付|云部署|负载均衡器|时间戳

升级学校云系统我们学校要根据目前学生互联网在线学习、教师教学资源电子化、教学评价过程化精细化的需求,计划升级为云教学系统。请同学们根据学校发展实际考虑云交付模型包含哪些?云部署采用什么模型最合适?请具体说明。9月3日买电脑还是租…...

C++11/C++14:lambda表达式

概念 lambda表达式:是一种表达式,是源代码的组成部分闭包:是lambda表达式创建的运行期对象,根据不同的捕获模式,闭包会持有数据的副本或引用闭包类:用于实例化闭包的类,每个lambda表达式都会触…...

算法课堂-分治算法

分治算法 把一任务分成几部分(通常是两部分)来完成(或只完成一部分),从而实现整个任务的完成 或者你可以把递归理解为分治算法的一部分 因为递归就是把问题分解来解决问题 例子 称假币 最笨的方法:两两称…...

操作系统权限提升(十六)之绕过UAC提权-CVE-2019-1388 UAC提权

系列文章 操作系统权限提升(十二)之绕过UAC提权-Windows UAC概述 操作系统权限提升(十三)之绕过UAC提权-MSF和CS绕过UAC提权 操作系统权限提升(十四)之绕过UAC提权-基于白名单AutoElevate绕过UAC提权 操作系统权限提升(十五)之绕过UAC提权-基于白名单DLL劫持绕过UAC提权 注&a…...

实例9:四足机器人运动学正解平面RR单腿可视化

实例9:四足机器人正向运动学单腿可视化 实验目的 通过动手实践,搭建mini pupper四足机器人的腿部,掌握机器人单腿结构。通过理论学习,熟悉几何法、旋转矩阵法在运动学正解(FK)中的用处。通过编程实践&…...

堆的基本存储

一、概念及其介绍堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。堆满足下列性质:堆中某个节点的值总是不大于或不小于其父节点的值。堆总是一棵完全二叉树。二、适用说明堆是利用完全二叉树的结构来维护一组数…...

如何获取物体立体信息通过一个相机

大家都知道的3D 技术是通过双眼视觉差异 得到的 但是3D的深度并没有那么强 为什么眼睛看到的就那么强 这无法让我们相信这个视觉差理论是和人眼睛立体感是一个原理 这个如今3D 电影都在用的技术 是和真正的人眼立体感 不一样的 或者说是有瑕疵的 分析一下现在的立体感技术 是通…...

【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)

目录 一、背景和挖掘目标 1、问题背景 2、传统方法的缺陷 3、原始数据情况 4、挖掘目标 二、分析方法和过程 1、初步分析 2、总体过程 第1步:数据获取 第2步:数据预处理 第3步:构建模型 三、思考和总结 项目地址:Data…...

一些硬件学习的注意事项与快捷方法

xilinx系列软件 系统适用版本 要安装在Ubuntu系统的话,要注意提前看好软件适用的版本,不要随便安好了Ubuntu系统又发现对应版本的xilinx软件不支持。 如下图,发行说明中会说明这个版本的软件所适配的系统版本。 下载 vivado vitis这些都可以…...

【Tomcat】Tomcat安装及环境配置

文章目录什么是Tomcat为什么我们需要用到Tomcattomcat下载及安装1、进入官网www.apache.org,找到Projects中的project List2、下载之后,解压3、找到tomcat目录下的startup.bat文件,双击之后最后结果出现多少多少秒,表示安装成功4、…...

负载均衡:LVS 笔记(二)

文章目录LVS 二层负载均衡机制LVS 三层负载均衡机制LVS 四层负载均衡机制LVS 调度算法轮叫调度(RR)加权轮叫调度(WRR)最小连接调度(LC)加权最小连接调度(WLC)基于局部性的最少链接调…...

SEO优化:干货技巧分享,包新站1-15天100%收录首页

不管是老域名还是新域名,不管是多久没有收录首页的站,此法周期7-30天,包首页收录!本人不喜欢空吹牛逼不实践的理论,公布具体操作:假如你想收录的域名是a.com,那么准备如下材料1.购买5-10个最便宜…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found"​, "n…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...