单变量回归问题
单变量回归问题
对于某房价问题,x为房屋大小,h即为预估房价,模型公式为:
hθ(x)=θ0+θ1xh_{\theta}(x)=\theta_{0}+\theta_{1}x hθ(x)=θ0+θ1x
要利用训练集拟合该公式(主要是计算θ0、θ1\theta_{0}、\theta_{1}θ0、θ1),需要代价函数(计算当前模型和测试集数据的误差),
J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2J(\theta_{0},\theta_{1})=\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2} J(θ0,θ1)=2m1i=1∑m(hθ(x(i))−y(i))2
当代价函数得到最小值时,此时拟合的公式最好。一般利用梯度下降法来得到代价函数的局部(全局)最优解。批量梯度下降的公式为
θj:=θj−α∂∂θjJ(θ0,θ1)(forj=0andj=1)\theta_{j}:=\theta_{j}-\alpha\frac{\partial }{\partial \theta_{j}}J(\theta_{0},\theta_{1}) (for \quad j=0\quad and \quad j=1) θj:=θj−α∂θj∂J(θ0,θ1)(forj=0andj=1)
∂∂θjJ(θ0,θ1)=∂∂θj(12m∑i=1m(hθ(x(i))−y(i))2)\frac{\partial }{\partial \theta_{j}}J(\theta_{0},\theta_{1})=\frac{\partial }{\partial \theta_{j}}(\frac{1}{2m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})^2}) ∂θj∂J(θ0,θ1)=∂θj∂(2m1i=1∑m(hθ(x(i))−y(i))2)
j=0时,∂∂θ0J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))j=0时,\frac{\partial }{\partial \theta_{0}}J(\theta_{0},\theta_{1})=\frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})} j=0时,∂θ0∂J(θ0,θ1)=m1i=1∑m(hθ(x(i))−y(i))
j=1时,∂∂θ1J(θ0,θ1)=1m∑i=1m(hθ(x(i))−y(i))⋅x(i)j=1时,\frac{\partial }{\partial \theta_{1}}J(\theta_{0},\theta_{1})=\frac{1}{m}\sum_{i=1}^{m}{(h_{\theta}(x^{(i)})-y^{(i)})\cdot x^{(i)}} j=1时,∂θ1∂J(θ0,θ1)=m1i=1∑m(hθ(x(i))−y(i))⋅x(i)
α\alphaα为学习率,决定沿着代价函数下降程度最大的方向向下的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。
如果α\alphaα太小了,即我的学习速率太小,需要很多步才能到达最低点,可能会很慢;
如果α\alphaα太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛。
在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没有必要再另外减小α\alphaα。
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qARHfSRE-1677383475783)(C:\Users\20491\AppData\Roaming\Typora\typora-user-images\image-20230222172604462.png)]](https://img-blog.csdnimg.cn/2fd583aba931446d8b75b4280f9a43c5.png)
相关文章:
单变量回归问题
单变量回归问题 对于某房价问题,x为房屋大小,h即为预估房价,模型公式为: hθ(x)θ0θ1xh_{\theta}(x)\theta_{0}\theta_{1}x hθ(x)θ0θ1x 要利用训练集拟合该公式(主要是计算θ0、θ1\theta_{0}、\theta_{1}θ…...
ubuntu/linux系统知识(36)linux网卡命名规则
文章目录背景命名规范系统默认命名规则优势背景 很久以前Linux 操作系统的网卡设备的传统命名方式是 eth0、eth1、eth2等,属于biosdevname 命名规范。 服务器通常有多块网卡,有板载集成的,同时也有插在PCIe插槽的。Linux系统的命名原来是et…...
java的一些冷知识
接口并没有继承Object类首先接口是一种特殊的类,理由就是将其编译后是一个class文件大家都知道java类都继承自Object,但是接口其实是并没有继承Object类的 可以自己写代码测试: 获取接口类的class对象后遍历它的methods,可以发现是不存在Obje…...
java代理模式
代理模式 为什么要学习代理模式?因为这是SpringAOP的底层! 【SpringAOP和SpingMVC}】 代理模式的分类: 静态代理 动态代理 代理就像这里的中介,帮助你去做向房东租房,你不能直接解出房东,而房东和中介…...
JUC包:CountDownLatch源码+实例讲解
1 缘起 有一次听到同事谈及AQS时,我有很多点懵, 只知道入队和出队,CLH(Craig,Landin and Hagersten)锁,并不了解AQS的应用, 同时结合之前遇到的多线程等待应用场景,发现…...
Log4j2基本使用
文章目录1. Log4j2入门2. Log4j2配置3. Log4j2异步日志4. Log4j2的性能Apache Log4j 2是对Log4j的升级版,参考了logback的一些优秀的设计,并且修复了一些问题,因此带 来了一些重大的提升,主要有: 异常处理,…...
A2L在CAN FD总线的使用
文章目录 前言CAN时间参数BTL CyclesTime Quantum时间份额SWJ同步跳转宽度波特率计算采样点计算CAN FD的第二采样点SSP推荐配置A2L配置总结前言 A2L作为XCP标定协议的载体,包括了总线信息的定义。本文介绍如何将基于CAN总线的A2L扩展为支持CAN-FD的A2L CAN时间参数 在介绍配…...
Android JetPack之启动优化StartUp初始化组件的详解和使用
一、背景 先看一下Android系统架构图 在Android设备中,设备先通电(PowerManager),然后加载内核层,内核走完,开始检查硬件,以及为硬件提供的公开接口,然后进入到库的加载。库挂载后开…...
[11]云计算|简答题|案例分析|云交付|云部署|负载均衡器|时间戳
升级学校云系统我们学校要根据目前学生互联网在线学习、教师教学资源电子化、教学评价过程化精细化的需求,计划升级为云教学系统。请同学们根据学校发展实际考虑云交付模型包含哪些?云部署采用什么模型最合适?请具体说明。9月3日买电脑还是租…...
C++11/C++14:lambda表达式
概念 lambda表达式:是一种表达式,是源代码的组成部分闭包:是lambda表达式创建的运行期对象,根据不同的捕获模式,闭包会持有数据的副本或引用闭包类:用于实例化闭包的类,每个lambda表达式都会触…...
算法课堂-分治算法
分治算法 把一任务分成几部分(通常是两部分)来完成(或只完成一部分),从而实现整个任务的完成 或者你可以把递归理解为分治算法的一部分 因为递归就是把问题分解来解决问题 例子 称假币 最笨的方法:两两称…...
操作系统权限提升(十六)之绕过UAC提权-CVE-2019-1388 UAC提权
系列文章 操作系统权限提升(十二)之绕过UAC提权-Windows UAC概述 操作系统权限提升(十三)之绕过UAC提权-MSF和CS绕过UAC提权 操作系统权限提升(十四)之绕过UAC提权-基于白名单AutoElevate绕过UAC提权 操作系统权限提升(十五)之绕过UAC提权-基于白名单DLL劫持绕过UAC提权 注&a…...
实例9:四足机器人运动学正解平面RR单腿可视化
实例9:四足机器人正向运动学单腿可视化 实验目的 通过动手实践,搭建mini pupper四足机器人的腿部,掌握机器人单腿结构。通过理论学习,熟悉几何法、旋转矩阵法在运动学正解(FK)中的用处。通过编程实践&…...
堆的基本存储
一、概念及其介绍堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。堆满足下列性质:堆中某个节点的值总是不大于或不小于其父节点的值。堆总是一棵完全二叉树。二、适用说明堆是利用完全二叉树的结构来维护一组数…...
如何获取物体立体信息通过一个相机
大家都知道的3D 技术是通过双眼视觉差异 得到的 但是3D的深度并没有那么强 为什么眼睛看到的就那么强 这无法让我们相信这个视觉差理论是和人眼睛立体感是一个原理 这个如今3D 电影都在用的技术 是和真正的人眼立体感 不一样的 或者说是有瑕疵的 分析一下现在的立体感技术 是通…...
【数据挖掘实战】——中医证型的关联规则挖掘(Apriori算法)
目录 一、背景和挖掘目标 1、问题背景 2、传统方法的缺陷 3、原始数据情况 4、挖掘目标 二、分析方法和过程 1、初步分析 2、总体过程 第1步:数据获取 第2步:数据预处理 第3步:构建模型 三、思考和总结 项目地址:Data…...
一些硬件学习的注意事项与快捷方法
xilinx系列软件 系统适用版本 要安装在Ubuntu系统的话,要注意提前看好软件适用的版本,不要随便安好了Ubuntu系统又发现对应版本的xilinx软件不支持。 如下图,发行说明中会说明这个版本的软件所适配的系统版本。 下载 vivado vitis这些都可以…...
【Tomcat】Tomcat安装及环境配置
文章目录什么是Tomcat为什么我们需要用到Tomcattomcat下载及安装1、进入官网www.apache.org,找到Projects中的project List2、下载之后,解压3、找到tomcat目录下的startup.bat文件,双击之后最后结果出现多少多少秒,表示安装成功4、…...
负载均衡:LVS 笔记(二)
文章目录LVS 二层负载均衡机制LVS 三层负载均衡机制LVS 四层负载均衡机制LVS 调度算法轮叫调度(RR)加权轮叫调度(WRR)最小连接调度(LC)加权最小连接调度(WLC)基于局部性的最少链接调…...
SEO优化:干货技巧分享,包新站1-15天100%收录首页
不管是老域名还是新域名,不管是多久没有收录首页的站,此法周期7-30天,包首页收录!本人不喜欢空吹牛逼不实践的理论,公布具体操作:假如你想收录的域名是a.com,那么准备如下材料1.购买5-10个最便宜…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
