当前位置: 首页 > news >正文

什么是神经网络,它的原理是啥?(2)

参考:https://www.youtube.com/watch?v=mlk0rddP3L4&list=PLuhqtP7jdD8CftMk831qdE8BlIteSaNzD

视频3:什么是激活函数?为什么我们需要激活函数?它的类型有哪些?

为什么需要激活函数?如果没有激活函数,那么神经网络的向前传播就会变成线性的。一个隐藏层和多个隐藏层实际上没有区别,如下图

在这里插入图片描述

因此,我们需要 非线性 的激活函数。(除了上面的原因,还有一个原因,那就是现实世界,一个物品的特征之间的关系通常也是非线性的,所以要用非线性的激活函数才能更好的去模拟它们)

接下来介绍激活函数的类型,首先是 sigmoid 函数,如下图

在这里插入图片描述

sigmoid 函数的特点是,定义域是负无穷到正无穷,而值域是 (0, 1)

sigmoid 函数很适合用来作为 二元分类 模型的 output nero 的激活函数。

但 sigmoid 函数不适合用作 隐藏层 的激活函数

随后是 Tanh 函数,如下图

在这里插入图片描述

当我们在用梯度下降法做训练时,我们会计算激活函数的导数,下图是 sigmoid 和 tanh 的导数图像

在这里插入图片描述
可以看到 tanh 的斜率变化远强于 sigmoid,因此使用 tanh 作为隐藏层的激活函数,模型训练速度会比 sigmoid 快很多

tanh 还有其它好的特性,那就是它的输出值是 (-1, 1)。相当于一个自动的 ”正则化“。这样一来在训练时,隐藏层之间的数据传输会简单很多。

不过 tanh 也有缺点,从导数图像来看,当 x 的绝对值大时,斜率很低,这会导致训练速度极其缓慢,这也叫做 ”vanishing gradient problem“

为了解决 vanishing gradient problem,我们提出了下面这种激活函数 ReLU 函数

在这里插入图片描述

tanh 是 piece-wise linear,因此它包含了 Linear 和 non-linear 的性质和优势

TODO:感觉这里有问题,如果 x > 0 则 f(x) = x,那感觉后边会出现 “线性退化”

以下是 ReLU 的变种

在这里插入图片描述

在遇到多分类问题的时候,我们不能使用 sigmoid 函数,它不合适

在这里插入图片描述

适用于多分类问题的激活函数是 softmax 函数,如下图

在这里插入图片描述
在这里插入图片描述
如上图,使用 e^x 的原因是,指数函数会随着 x 的增加爆炸性增长,从而让我们的最大可能性的可能性变得更加突出

如下图是 softmax 函数的一个更加严格的定义

在这里插入图片描述

在面对回归问题的时候,通常我们不对 output neuron 使用任何激活函数

在这里插入图片描述

接下来做个总结

对于二元分类问题,我们通常使用 sigmoid 函数作为 output neuron 的激活函数,而使用 ReLU/tanh 作为隐藏层的激活函数,如下图

在这里插入图片描述

sigmoid 和 tanh 都有一个问题:vanishing gradient problem。这个问题可以由 ReLU 函数解决,ReLU 函数还有很多变种
在这里插入图片描述

在解决多分类问题的时候,我们通常使用 tanh/ReLU 作为隐藏层的激活函数,使用 Softmax 作为 output layer 的激活函数
而面对回归问题时,通常 output layer 没有激活函数

在这里插入图片描述

视频4:TODO

TODO: here

相关文章:

什么是神经网络,它的原理是啥?(2)

参考:https://www.youtube.com/watch?vmlk0rddP3L4&listPLuhqtP7jdD8CftMk831qdE8BlIteSaNzD 视频3:什么是激活函数?为什么我们需要激活函数?它的类型有哪些? 为什么需要激活函数?如果没有激活函数&…...

leetcode做题笔记206. 反转链表

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1]示例 2: 输入:head [1,2] 输出:[2,1]示例 3: 输入&am…...

2023/10/31 JAVA学习

idea一般会自动帮我们导包 new string创建出的字符串是空的,可以对其进行新赋值 s[i]在Java字符串中是没有这个东西的,想要遍历字符串只能用下面这种方式 但是可以把字符串,转换为字符数组然后那样输出 java中是无法s1 s2这样比较字符串的,因为这样比较的是地址,如果是new创建…...

SurfaceFliger绘制流程

前景提要: 当HWComposer接收到Vsync信号时,唤醒DisSync线程,在其中唤醒EventThread线程,调用DisplayEventReceiver的sendObjects像BitTub发送消息,由于在SurfaceFlinger的init过程中创建了EventThread线程&#xff0c…...

系统架构设计师-第14章-云原生架构设计理论与实践-

云原生架构产生背景 云原生与商业场景的深度融合 ( 1 )从为企业带来的价值来看,云原生架构有着以下优势通过对多元算力的支持,满足不同应用场景的个性化算力需求,井基于软硬协同架构,为应用提供极致性能的云原生算力 (2) 通过最…...

conda 实践

1. 环境部署 1.1. 下载 anaconda 安装包 下面这个网址查找自己需要的版本 https://repo.anaconda.com/archive/ 或者手动下载。 wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh 1.2. 执行安装程序 #安装依赖: sudo yum install bzip2…...

行业追踪,2023-10-31

自动复盘 2023-10-31 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…...

springboot 配置多个Redis数据源详解

实现原理 需要配置好两个数据源,创建两个RedisTemplate在配置类中注入两个RedisConnectionFactory,分别创建对应的RedisTemplate进行操作 详解 配置数据源 我这里是在之前已有一个配置下面另外加了一个 spring:redis:# 地址host: localh…...

【数据结构】排序算法总结

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈数据结构 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 总结 1. 归并排序2. 计数排序3. 排序…...

作为20年老程序员,我如何使用GPT4来帮我写代码

如果你还在用google寻找解决代码bug的方案,那你真的out了,试试gpt4, save my life. 不是小编危言耸听,最近用gpt4来写代码极大地提高了代码生产力和运行效率,今天特地跟大家分享一下。 https://www.promptspower.comhttps://www.…...

【机器学习合集】模型设计之残差网络 ->(个人学习记录笔记)

文章目录 模型设计之残差网络1. 什么是残差结构1.1 网络加深遇到的优化问题1.2 short connect技术 2. 残差网络及有效性理解2.1 残差网络 3. 残差网络的发展3.1 密集残差网络3.2 更宽的残差网络(wide resnet)3.3 分组残差网络3.4 Dual Path Network3.5 加权残差网络3.6 预激活残…...

GoLong的学习之路(十六)基础工具之Gin框架

Gin框架介绍及使用,这张不用看内容就知道非常重要,重要到什么地步呢?重要到开发java不会Spring全家桶这种概念。 上几篇文章写的是如何构建骨架,经脉。这一章是将血肉注入。 文章目录 Gin框架RESTful API Gin渲染HTML渲染静态文件…...

VMware打开centos黑屏解决方法汇总

VMware打开centos黑屏解决方法汇总 前言:一. VMware打开centos黑屏解决方法汇总一 .情况情况一:情况二情况三 二. 解决方法最简单的方法:一. 以管理员权限在命令行执行1. 管理员身份运行cmd2. 输入“netsh winsock reset”,回车3. 重启电脑即…...

5G物联网关相较有线网关有哪些独特优势

5G为产业物联网应用带来了质的飞跃,5G技术实现更高速率、更低延迟和更大带宽,使得物联网能够接入更多数量的设备,实现更稳定、高效的连接和数据传输,在提高生产效率的同时,也进一步促进了物联网的应用发展和升级。 针对…...

【数据结构】顺序表的学习

前言:在之前我们学习了C语言的各种各样的语法,因此我们今天开始学习数据结构这一个模块,因此我们就从第一个部分来开始学习"顺序表"。 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:C程序设计谭浩强版本…...

在NISQ小型计算机上执行大型并行量子计算的可能性

简介 Steve White提出了密度矩阵重整化群(DMRG)的基本思想,即纠缠是一种有价值的资源,可以用来精确或近似地描述大量子系统。后来,这一思想被理解为优化矩阵积状态(MPS)的算法,支持…...

考虑时空相关性的风电功率预测误差MATLAB代码

微❤关注“电气仔推送”获得资料(专享优惠) 风电功率预测置信区间误差分析拟合 1.风电功率预测误差--时空相关性 展示第一一个时间段的风电功率预测与实际风电功率值的比较。填充区域表示预测的不确定性,显示了95%置信区间内预测可能的范围…...

ASP.NET WebApi 极简依赖注入

文章目录 环境服务类启动项注入使用依赖注入的优点 环境 .NET Core 7.0ASP.NET CoreVisual Studio 2022 服务类 public class T_TempService {public T_TempService(){}public void Test(){}}启动项注入 #region 依赖注入 builder.Services.AddTransient<T_TempService&g…...

解决proteus仿真stm32,IIC通讯,IIC DEBUG无法显示从机应答信号的问题(问题情况为在8位数据后应答位显示?)

1、错误现象 错误现象如下&#xff0c;在IIC数据传输8位数据后&#xff0c;IIC DEBUG的应答位无法显示应答位 2、错误原因 我们打开信号传输的示波器&#xff0c;直接去查看IIC从机校验位的数据波形&#xff0c;可以看到从机示波器显示的的波形为半高ACK&#xff0c;那错误原…...

PHP判断闰年

闰年的规则 1.能被4整除且不能被100整除 &#xff08;普通闰年&#xff09; 2.能被400整除&#xff0c;公历年份是整百数的&#xff0c;必须是400的倍数才是闰年&#xff08;世纪闰年&#xff09; 代码 function isLeapYear($year) {if($year%40 && $year%100!0){r…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...