当前位置: 首页 > news >正文

【数据结构】排序算法总结

⭐ 作者:小胡_不糊涂
🌱 作者主页:小胡_不糊涂的个人主页
📀 收录专栏:浅谈数据结构
💖 持续更文,关注博主少走弯路,谢谢大家支持 💖

总结

  • 1. 归并排序
  • 2. 计数排序
  • 3. 排序算法复杂度及稳定性分析

在这里插入图片描述
在总结之前我们先介绍一下归并排序和计数排序!

1. 归并排序

归并排序(MERGE-SORT) 是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
在这里插入图片描述

代码实现:

/*** 归并排序* 时间复杂度:O(N*logN)* 空间复杂度:O(logN)* 稳定性:稳定的排序* 目前为止3个稳定的排序:直接插入排序、冒泡排序、归并排序* @param array*/public static void mergeSort(int[] array){mergeSortFun(array,0,array.length-1);}private static void mergeSortFun(int[] array,int start,int end){if(start>=end){return;}//拆分int mid=(start+end)/2;mergeSortFun(array,start,mid);mergeSortFun(array,mid+1,end);merge(array,start,mid,end);//合并}private static void merge(int[] array,int left,int mid,int right){//定义拆分后的左边部分int s1=left;int e1=mid;//定义拆分后的右边部分int s2=mid+1;int e2=right;//定义一个新数组存放合并后的数据int[] tmp=new int[right-left+1];int i=0;//tmp的下标//同时满足-证明两个归并段都有数据while(s1<=e1&& s2<=e2){if(array[s1]<=array[s2]){tmp[i++]=array[s1++];}else{tmp[i++]=array[s2++];}}while(s1<=e1){tmp[i++]=array[s1++];}while (s2 <= e2) {tmp[i++]=array[s2++];}//把排好序的数据 拷贝回原来的数组array当中for(int j=0;j<tmp.length;j++){array[j+left]=tmp[j];}}

归并排序可以解决海量数据的排序问题:
外部排序:排序过程需要在磁盘等外部存储进行的排序
前提: 内存只有 1G,需要排序的数据有 100G
因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序。

  1. 先把文件切分成 200 份,每个 512 M
  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
  3. 进行 2 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

2. 计数排序

基本思想: 计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:

  1. 统计相同元素出现次数
  2. 根据统计的结果将序列回收到原来的序列中

代码实现:

/*** 计数排序的场景:* 指定范围内的数据* 时间复杂度: O(MAX(N,范围))* 空间复杂度:O(范围)* 稳定性:稳定的排序* @param array*/public static void countSort(int[] array) {//寻找最大值、最小值int maxvalue=array[0];int minvalue=array[0];for(int i=0;i<array.length;i++){if(array[i]>maxvalue){maxvalue=array[i];}if(array[i]<minvalue){minvalue=array[i];}}int[] countarr=new int[maxvalue-minvalue+1];//记录array中元素出现个数,初始值都为0for(int i=0;i<array.length;i++){countarr[array[i]-minvalue]++;}int index=0;//重新定义array下标for(int i=0;i<countarr.length;i++){while(countarr[i]>0){array[index]=i+minvalue;index++;countarr[i]--;}}}

3. 排序算法复杂度及稳定性分析

在这里插入图片描述

排序方法最好平均最坏空间复杂度稳定性
冒泡排序O(n)O(n^2)O(n^2)O(1)稳定
插入排序O(n)O(n^2)O(n^2)O(1)稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
希尔排序O(n)O(n^1.3)O(n^2)O(1)不稳定
堆排序O(n * log(n))O(n * log(n))O(n * log(n))O(1)不稳定
快速排序O(n * log(n))O(n * log(n))O(n^2)O(log(n)) ~ O(n)不稳定
归并排序O(n * log(n))O(n * log(n))O(n * log(n))O(n)稳定

相关文章:

【数据结构】排序算法总结

⭐ 作者&#xff1a;小胡_不糊涂 &#x1f331; 作者主页&#xff1a;小胡_不糊涂的个人主页 &#x1f4c0; 收录专栏&#xff1a;浅谈数据结构 &#x1f496; 持续更文&#xff0c;关注博主少走弯路&#xff0c;谢谢大家支持 &#x1f496; 总结 1. 归并排序2. 计数排序3. 排序…...

作为20年老程序员,我如何使用GPT4来帮我写代码

如果你还在用google寻找解决代码bug的方案&#xff0c;那你真的out了&#xff0c;试试gpt4, save my life. 不是小编危言耸听&#xff0c;最近用gpt4来写代码极大地提高了代码生产力和运行效率&#xff0c;今天特地跟大家分享一下。 https://www.promptspower.comhttps://www.…...

【机器学习合集】模型设计之残差网络 ->(个人学习记录笔记)

文章目录 模型设计之残差网络1. 什么是残差结构1.1 网络加深遇到的优化问题1.2 short connect技术 2. 残差网络及有效性理解2.1 残差网络 3. 残差网络的发展3.1 密集残差网络3.2 更宽的残差网络(wide resnet)3.3 分组残差网络3.4 Dual Path Network3.5 加权残差网络3.6 预激活残…...

GoLong的学习之路(十六)基础工具之Gin框架

Gin框架介绍及使用&#xff0c;这张不用看内容就知道非常重要&#xff0c;重要到什么地步呢&#xff1f;重要到开发java不会Spring全家桶这种概念。 上几篇文章写的是如何构建骨架&#xff0c;经脉。这一章是将血肉注入。 文章目录 Gin框架RESTful API Gin渲染HTML渲染静态文件…...

VMware打开centos黑屏解决方法汇总

VMware打开centos黑屏解决方法汇总 前言&#xff1a;一. VMware打开centos黑屏解决方法汇总一 .情况情况一&#xff1a;情况二情况三 二. 解决方法最简单的方法&#xff1a;一. 以管理员权限在命令行执行1. 管理员身份运行cmd2. 输入“netsh winsock reset”,回车3. 重启电脑即…...

5G物联网关相较有线网关有哪些独特优势

5G为产业物联网应用带来了质的飞跃&#xff0c;5G技术实现更高速率、更低延迟和更大带宽&#xff0c;使得物联网能够接入更多数量的设备&#xff0c;实现更稳定、高效的连接和数据传输&#xff0c;在提高生产效率的同时&#xff0c;也进一步促进了物联网的应用发展和升级。 针对…...

【数据结构】顺序表的学习

前言:在之前我们学习了C语言的各种各样的语法&#xff0c;因此我们今天开始学习数据结构这一个模块&#xff0c;因此我们就从第一个部分来开始学习"顺序表"。 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:C程序设计谭浩强版本…...

在NISQ小型计算机上执行大型并行量子计算的可能性

简介 Steve White提出了密度矩阵重整化群&#xff08;DMRG&#xff09;的基本思想&#xff0c;即纠缠是一种有价值的资源&#xff0c;可以用来精确或近似地描述大量子系统。后来&#xff0c;这一思想被理解为优化矩阵积状态&#xff08;MPS&#xff09;的算法&#xff0c;支持…...

考虑时空相关性的风电功率预测误差MATLAB代码

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 风电功率预测置信区间误差分析拟合 1.风电功率预测误差--时空相关性 展示第一一个时间段的风电功率预测与实际风电功率值的比较。填充区域表示预测的不确定性&#xff0c;显示了95%置信区间内预测可能的范围…...

ASP.NET WebApi 极简依赖注入

文章目录 环境服务类启动项注入使用依赖注入的优点 环境 .NET Core 7.0ASP.NET CoreVisual Studio 2022 服务类 public class T_TempService {public T_TempService(){}public void Test(){}}启动项注入 #region 依赖注入 builder.Services.AddTransient<T_TempService&g…...

解决proteus仿真stm32,IIC通讯,IIC DEBUG无法显示从机应答信号的问题(问题情况为在8位数据后应答位显示?)

1、错误现象 错误现象如下&#xff0c;在IIC数据传输8位数据后&#xff0c;IIC DEBUG的应答位无法显示应答位 2、错误原因 我们打开信号传输的示波器&#xff0c;直接去查看IIC从机校验位的数据波形&#xff0c;可以看到从机示波器显示的的波形为半高ACK&#xff0c;那错误原…...

PHP判断闰年

闰年的规则 1.能被4整除且不能被100整除 &#xff08;普通闰年&#xff09; 2.能被400整除&#xff0c;公历年份是整百数的&#xff0c;必须是400的倍数才是闰年&#xff08;世纪闰年&#xff09; 代码 function isLeapYear($year) {if($year%40 && $year%100!0){r…...

证照之星XE专业版下载专业证件照制作工具

值得肯定的是智能背景替换功能&#xff0c;轻松解决背景处理这一世界难题。不得不提及的是新增打印字体设置&#xff0c;包含字体选择、字号大小、字体颜色等。不同领域的应用证明了万能制作&#xff0c;系统支持自定义证照规格&#xff0c;并预设了17种常用的证件照规格。人所…...

VR全景图片如何制作?揭秘VR全景图片制作全流程

引言&#xff1a; VR全景图片是一种以全景视角为基础的图片制作技术&#xff0c;能够呈现出更为真实、立体的视觉体验。通过VR全景图片&#xff0c;观众可以360环顾四周&#xff0c;仿佛身临其境&#xff0c;提供了一种全新的感官体验&#xff0c;那么如何制作出令人满意的全景…...

vue element el-table-column 循环示例代码

如果你想循环生成多个el-table-column&#xff0c;可以使用v-for指令。以下是一个示例&#xff1a; <template><el-table :data"tableData"><el-table-column v-for"column in columns" :key"column.prop" :label"column.l…...

R语言生物群落(生态)数据统计分析与绘图实践技术应用

R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂&#xff0c;涉及众多统计分析方法。以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线&#xff0c;通过多个来自经典…...

有了 GPT,还需要付费咨询吗?

之前写过一篇文章《在创业公司&#xff0c;我靠它续命 …》&#xff0c;提到现在写代码基本靠 GPT。现在这种状况不仅没有改变&#xff0c;反而依赖更深。公司立项开发产品的 Linux 版本&#xff0c;全靠我一个人。我之前虽然一直使用 Linux 开发环境&#xff0c;对 Linux 系统…...

如何搭建一台服务器?

一.准备工作 1. 确定服务器类型&#xff1a;根据需求选择适合的服务器类型&#xff0c;如网站服务器、数据库服务器、文件服务器等。 2. 选择操作系统&#xff1a;根据服务器类型选择合适的操作系统&#xff0c;如Linux&#xff08;如Ubuntu、CentOS&#xff09;、Windows Se…...

[转载]C++序列化框架介绍和对比

Google Protocol Buffers Protocol buffers 是一种语言中立&#xff0c;平台无关&#xff0c;可扩展的序列化数据的格式&#xff0c;可用于通信协议&#xff0c;数据存储等。 Protocol buffers 在序列化数据方面&#xff0c;它是灵活的&#xff0c;高效的。相比于 XML 来说&…...

分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09; 目录 分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09;分类效果基本描述程序设计参考资料 分类效果 基本描述 1…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践

前言&#xff1a;本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中&#xff0c;跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南&#xff0c;你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案&#xff0c;并结合内网…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...