相关性网络图 | 热图中添加显著性
一边学习,一边总结,一边分享!
本期教程

写在前面
此图是一位同学看到后,想出的一期教程。
最近,自己的事情比较多,会无暇顾及社群和公众号教程。
1 安装和加载相关的R包
library(ggraph)
library(tidygraph)
# install.packages("devtools")
#devtools::install_github("Hy4m/linkET", force = TRUE)
library("linkET")
packageVersion("linkET")
packageVersion("igraph")
#devtools::install_github("Hy4m/netET")
library(netET)
设置路径
setwd("E:\\小杜的生信筆記\\2023\\20231012-mental分析网络图")
2 加载数据
##mantel test
library(dplyr)data("varechem", package = "vegan")
data("varespec", package = "vegan")
2.1 查看数据
## 查看数据
dim(varespec)
# [1] 24 44
varespec[1:10,1:10]
dim(varechem)
# [1] 24 14
varechem[1:10,1:10]
2.2 计算网络关系
mantel <- mantel_test(varespec, ## 分类数据varechem, ## 影响因子数据## 以下代码是根据varespec(分类数据)进行分析计算spec_select = list(Spec01 = 1:7,Spec02 = 8:18,Spec03 = 19:37,Spec04 = 38:44)) %>% mutate(rd = cut(r, breaks = c(-Inf, 0.2, 0.4, Inf),labels = c("< 0.2", "0.2 - 0.4", ">= 0.4")),pd = cut(p, breaks = c(-Inf, 0.01, 0.05, Inf),labels = c("< 0.01", "0.01 - 0.05", ">= 0.05")))
查看数据
head(mantel)
###
> head(mantel)
# A tibble: 6 × 6spec env r p rd pd <chr> <chr> <dbl> <dbl> <fct> <fct>
1 Spec01 N 0.256 0.015 0.2 - 0.4 0.01 - 0.05
2 Spec01 P 0.137 0.093 < 0.2 >= 0.05
3 Spec01 K 0.400 0.004 >= 0.4 < 0.01
4 Spec01 Ca 0.0113 0.427 < 0.2 >= 0.05
5 Spec01 Mg 0.0263 0.366 < 0.2 >= 0.05
6 Spec01 S 0.275 0.021 0.2 - 0.4 0.01 - 0.05
2.3 绘制基础mantel相关性网络图
## 绘制相关性热图
D0 <- qcorrplot(correlate(varechem), type = "lower", diag = FALSE) + geom_square() + ## 相关性热图的形状## geom_couple(aes(colour = pd, size = rd), data = mantel, curvature = nice_curvature()) +## 颜色参数调整scale_fill_gradientn(colours = RColorBrewer::brewer.pal(11, "RdBu")) +scale_size_manual(values = c(0.5, 1, 2)) +scale_colour_manual(values = color_pal(3)) +guides(size = guide_legend(title = "Mantel's r",override.aes = list(colour = "grey35"), order = 2),colour = guide_legend(title = "Mantel's p", override.aes = list(size = 3), order = 1),fill = guide_colorbar(title = "Pearson's r", order = 3))
D0
ggsave("Mental相关性网络图.jpg",width = 6, height = 6)

2.4 绘制显著性网络图
我们在代码中详细标注了调整参数,可以自行根据需求进行调整即可。


本教程详细教程:相关性网络图 | 热图中添加显著性
往期文章:
1. 复现SCI文章系列专栏
2. 《生信知识库订阅须知》,同步更新,易于搜索与管理。
3. 最全WGCNA教程(替换数据即可出全部结果与图形)
-
WGCNA分析 | 全流程分析代码 | 代码一
-
WGCNA分析 | 全流程分析代码 | 代码二
-
WGCNA分析 | 全流程代码分享 | 代码三
-
WGCNA分析 | 全流程分析代码 | 代码四
-
WGCNA分析 | 全流程分析代码 | 代码五(最新版本)
4. 精美图形绘制教程
- 精美图形绘制教程
5. 转录组分析教程
转录组上游分析教程[零基础]
小杜的生信筆記 ,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!
相关文章:
相关性网络图 | 热图中添加显著性
一边学习,一边总结,一边分享! 本期教程 写在前面 此图是一位同学看到后,想出的一期教程。 最近,自己的事情比较多,会无暇顾及社群和公众号教程。 1 安装和加载相关的R包 library(ggraph) library(tidy…...
cocosCreator 之 微信小游戏授权设置和调用wxAPI获取用户信息
版本: 3.8.0 语言: TypeScript 环境: Mac 官方文档: 微信官方文档 - 开放能力 微信 API 小游戏环境 在cocosCreator的3.x版本项目开发中,TypeScript最终会被转换为JavaScript语言。 JavaScript的运行时调用的API…...
element ui el-table表格纵向横向滚动条去除并隐藏空白占位列
需求 当table内容列过多时,可通过height属性设置table高度以固定table高度、固定表头,使table内容可以滚动 现在需求是右侧滚动条不好看,需要去除滚动条,并隐藏滚动条所占列的位置 // ----------修改elementui表格的默认样式-…...
防止python进程重复执行
前言 通过保存的进程pid查询上次执行的进程是否退出,决定是否启动新的python进程 代码 pidOption.py import os import psutil pidPath = "saveFile.pid"#写入进程号 def writePid():pid = str(os.getpid())f = open(pidPath, w)f.write(pid...
LV.12 D13 C工程与寄存器封装 学习笔记
一、C语言工程简介 把模板在linux解压出来 代码写在interface.c就可以了。 map.lds是链接脚本文件(负责代码的排布) include中是头文件,src中是写好的源代码 start.s是启动代码,在interface.c之前运行,把cpu和栈做一…...
Java SE 学习笔记(十九)—— XML、设计模式
目录 1 XML1.1 XML 概述1.2 XML 语法规则1.3 XML 文档约束(了解)1.3.1 DTD 约束1.3.2 schema 约束 2 XML 解析2.1 XML 解析概述2.2 Dom4J 解析 XML 文件2.3 XML 解析案例 3 XML 检索4 设计模式4.1 工厂模式4.2 装饰模式 1 XML 在有些业务场景下ÿ…...
grafana InfluxDB returned error: error reading influxDB 400错误解决
问题: 如图提示错误解决 确认自己的docker容器是否配置了以下3个字段 DOCKER_INFLUXDB_INIT_USERNAMExxx DOCKER_INFLUXDB_INIT_PASSWORDyyy DOCKER_INFLUXDB_INIT_ADMIN_TOKENzzz 如果有,在grafana中需要添加header配置Header: Authorization , Value…...
【LeetCode:150. 逆波兰表达式求值 | 栈】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
什么是神经网络,它的原理是啥?(2)
参考:https://www.youtube.com/watch?vmlk0rddP3L4&listPLuhqtP7jdD8CftMk831qdE8BlIteSaNzD 视频3:什么是激活函数?为什么我们需要激活函数?它的类型有哪些? 为什么需要激活函数?如果没有激活函数&…...
leetcode做题笔记206. 反转链表
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1]示例 2: 输入:head [1,2] 输出:[2,1]示例 3: 输入&am…...
2023/10/31 JAVA学习
idea一般会自动帮我们导包 new string创建出的字符串是空的,可以对其进行新赋值 s[i]在Java字符串中是没有这个东西的,想要遍历字符串只能用下面这种方式 但是可以把字符串,转换为字符数组然后那样输出 java中是无法s1 s2这样比较字符串的,因为这样比较的是地址,如果是new创建…...
SurfaceFliger绘制流程
前景提要: 当HWComposer接收到Vsync信号时,唤醒DisSync线程,在其中唤醒EventThread线程,调用DisplayEventReceiver的sendObjects像BitTub发送消息,由于在SurfaceFlinger的init过程中创建了EventThread线程,…...
系统架构设计师-第14章-云原生架构设计理论与实践-
云原生架构产生背景 云原生与商业场景的深度融合 ( 1 )从为企业带来的价值来看,云原生架构有着以下优势通过对多元算力的支持,满足不同应用场景的个性化算力需求,井基于软硬协同架构,为应用提供极致性能的云原生算力 (2) 通过最…...
conda 实践
1. 环境部署 1.1. 下载 anaconda 安装包 下面这个网址查找自己需要的版本 https://repo.anaconda.com/archive/ 或者手动下载。 wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh 1.2. 执行安装程序 #安装依赖: sudo yum install bzip2…...
行业追踪,2023-10-31
自动复盘 2023-10-31 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…...
springboot 配置多个Redis数据源详解
实现原理 需要配置好两个数据源,创建两个RedisTemplate在配置类中注入两个RedisConnectionFactory,分别创建对应的RedisTemplate进行操作 详解 配置数据源 我这里是在之前已有一个配置下面另外加了一个 spring:redis:# 地址host: localh…...
【数据结构】排序算法总结
⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈数据结构 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 总结 1. 归并排序2. 计数排序3. 排序…...
作为20年老程序员,我如何使用GPT4来帮我写代码
如果你还在用google寻找解决代码bug的方案,那你真的out了,试试gpt4, save my life. 不是小编危言耸听,最近用gpt4来写代码极大地提高了代码生产力和运行效率,今天特地跟大家分享一下。 https://www.promptspower.comhttps://www.…...
【机器学习合集】模型设计之残差网络 ->(个人学习记录笔记)
文章目录 模型设计之残差网络1. 什么是残差结构1.1 网络加深遇到的优化问题1.2 short connect技术 2. 残差网络及有效性理解2.1 残差网络 3. 残差网络的发展3.1 密集残差网络3.2 更宽的残差网络(wide resnet)3.3 分组残差网络3.4 Dual Path Network3.5 加权残差网络3.6 预激活残…...
GoLong的学习之路(十六)基础工具之Gin框架
Gin框架介绍及使用,这张不用看内容就知道非常重要,重要到什么地步呢?重要到开发java不会Spring全家桶这种概念。 上几篇文章写的是如何构建骨架,经脉。这一章是将血肉注入。 文章目录 Gin框架RESTful API Gin渲染HTML渲染静态文件…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
