数据挖掘概述
目录
- 1、数据挖掘概述
- 2、数据挖掘常用库
- 3、模型介绍
- 3.1 分类
- 3.2 聚类
- 3.3 回归
- 3.4 关联
- 3.5 模型集成
 
- 4、模型评估
- ROC 曲线
 
- 5、模型应用
 
1、数据挖掘概述
数据挖掘:寻找数据中隐含的知识并用于产生商业价值
 数据挖掘产生原因:海量数据、维度众多、问题复杂
数据挖掘作用:
- 分类问题(该新闻是属于体育新闻还是娱乐新闻还是其他类型)
- 聚类问题(地上掉落的一堆树叶,哪些属于同一棵树)
- 回归问题(已知前几年的房价数据,预测明年的房价)
- 关联问题(推荐算法)
数据挖掘流程:
- 业务理解:和业务方充分沟通,明确需求
- 数据理解
- 数据准备
 数据清洗:
 .缺失值处理(删除、填充、不做处理)
 .异常值处理:数据本身错误(记录时错误)、数据本身是正常的但不符号业务实际(某账号游戏充值10万)要对正常异常值保留甚至特别留意
 .数据偏差:处理数据严重不对等不均衡情况
 .特征选择:
构建训练集和测试集方法(留出法、交叉严重法、自助法)
- 构建模型
- 评估模型
- 模型部署
2、数据挖掘常用库
数学模块math
 日期时间模块datetime
 随机模块random
 文件模块操作file
 正则匹配模块re
 系统接口模块sys
import math
dir(math)  #查看math中所有方法名称
help(math) #match的描述,以及方法的介绍
3、模型介绍
3.1 分类
分类是有监督的学习过程。 处处理分类问题首先要有一批已经有标签结果的数据,经过分类算法的学习,
 就可以预测新的未知数据的分类。
 分类模型: KNN 算法、决策树算法、随机森林、SVM 等
3.2 聚类
聚类是无监督的,聚类就是把一个数据集划分成多个组的过程,使得组内的数据尽量高度集中,而和其他组的数据之间尽量远离。这种方法是针对已有的数据进行划分,不涉及未知的数据。
3.3 回归
回归:与分类问题十分相似,都是根据已知的数据去学习,然后为新的数据进行预测。但是不同的是,分类方法输出的是离散的标签,回归方法输出的结果是连续值
3.4 关联
关联问题对应的方法就是关联分析。这是一种无监督学习,关联分析是要在已有的数据中寻找出数据的相关关系。比如在我们津津乐道的啤酒与尿布
3.5 模型集成
模型集成也可以叫作集成学习,其思路就是去合并多个模型来提升整体的效果
 训练多个并列的模型,或者串行地训练多个模型
 模型集成的 3 种方式:
- Bagging(装袋法):多次随机抽样构建训练集,每构建一次,就训练一个模型,最后对多个模型的结果附加一层决策,使用平均结果作为最终结果。随机森林算法就运用了该方法
  
- Boosting(增强法):是串行的训练,即每次把上一次训练的结果也作为一个特征,不断地强化学习的效果。
  
- Stacking(堆叠法):是对前面两种方法进行了扩展,训练的多个模型既可
 以进行横向扩展,也可以进行串行增强,最终再使用分类或者回归的方法把前面模型的结果进行整合。
 其中的每一个模型可以使用不同的算法,对于结构也没有特定的规则,真正是 “黑猫白猫,抓住老鼠就是好猫”。所以,在使用堆叠法时,就需要你在具体业务场景中不断地去进行尝试和优化,以达到最佳效果。
4、模型评估
模型评估就是对你的模型进行多种维度的评估,来确认你的模型是否可以应用。
 准确率指标:
- TP(true positive)原本为真,且被预测为真
- TN(true negative)原本为真,但预测为假
- FP(false positive)原本为假,但被预测为真
- FN(false negative)原本为假,且预测为假
计算数值:
- 准确率:预测正确的比例 (TP+FN)/(TP+TN+FP+FN)
 在所有样本中,预测正确的概率
- 精确率:在所有真的样本中被预测为真的比例 TP/(TP+FP)你认为的正样本中,有多少是真的正确的概率
- 召回率:按预测结果分,在所有预测为真的样本中实际也是真的比例 TP/(TP+FN)正样本中有多少是被找了出来
ROC 曲线
两个值:真正例率和假正例率
 真正例率:TP/(TP+FN)
 假正例率:FP/(FP+TN)
 使用这两个值在坐标系上画出一系列的点,纵坐标是真正例率,横坐标是假正例率,把这些点连起来形成的曲线就是 ROC 曲线
ROC 曲线下方的面积是 AUC 值(Area Under Curve,曲线下面积),ROC 曲线和 AUC 值可以反映一个模型的稳定性,当 ROC 曲线接近对角线时,说明模型输出很不稳定,模型就越不准确
 
一些其他指标:泛化能力(过拟合与欠拟合)、可解释性、鲁棒性、模型速度
这些模型评估,大多适用于分类模型,因为分类模型是一种监督模型,对于无监督模型,本身没有非常明确的结果标准,所以也很难找到一个衡量指标
5、模型应用
模型产出结果,都需要应用到业务当中去
服务架构部署一些概念:
 Flask Web 框架:在日常的任务中可以使用 Flask 作为构建我们的 Web 服务框架,它是用 Python 来实现的。
Gunicorn HTTP 服务:可以理解成 HTTP 服务器,需要注意的是 Gunicorn 只能运行在 Linux 服务器上面。
Nginx 负载均衡:Nginx 是一个功能很强大的 Web 服务项目,它可以用作负载均衡器,很多大公司都在使用。负载均衡用于通过集群中的多个服务器或实例将工作负载进行分布,目的是避免任何单一资源发生过载,进而将响应时间最小化、程序吞吐量最大化。在上图中,负载均衡器是面向客户端的实体,会把来自客户端的所有请求分配到集群中的多台服务器上。
客户端:业务的具体场景,可能是手机 App,也可能是其他服务器应用,客户端会向托管用于模型预测的架构服务器发送请求。比如今日头条 App 页面下拉,将会调用推荐算法模型进行推荐内容的计算。
相关文章:
 
数据挖掘概述
目录1、数据挖掘概述2、数据挖掘常用库3、模型介绍3.1 分类3.2 聚类3.3 回归3.4 关联3.5 模型集成4、模型评估ROC 曲线5、模型应用1、数据挖掘概述 数据挖掘:寻找数据中隐含的知识并用于产生商业价值 数据挖掘产生原因:海量数据、维度众多、问题复杂 数…...
linux kernel iio 架构
linux kernel iio 架构讲解Linux IIO(Industrial I/O)架构是Linux内核提供的一种用于支持各种类型传感器和数据采集设备的子系统,包括温度、压力、湿度、加速度、光度等多种传感器。IIO架构的核心是一个通用的IIO子系统,它提供了一…...
 
Socket通信详解
Socket通信详解 文章目录Socket通信详解Socket流程介绍函数介绍编程实例Socket流程介绍 socket通信类似于电话通信,其服务器基本流程就是 Created with Raphal 2.3.0安装电话socket()分配电话号码bind()连接电话线listen()拿起话筒accept()函数介绍 socket() 其中…...
 
多分类、正则化问题
多分类问题 利用逻辑回归解决多分类问题,假如有一个训练集,有 3 个类别,分别为三角形 𝑦 1,方框𝑦 2,圆圈 𝑦 3。我们下面要做的就是使用一个训练集,将其分成 3 个二…...
 
史上最全面的软件测试面试题总结(接口、自动化、性能全都有)
目录 思维发散 Linux 测试概念和模型 测试计划与工具 测试用例设计 Web项目 Python基础 算法 逻辑 接口测试 性能测试 总结感谢每一个认真阅读我文章的人!!! 重点:配套学习资料和视频教学 思维发散 一个球ÿ…...
 
速来~与 Werner Vogels 博士一起探索敏捷性与创新速度一起提升的秘方
Amazon Web Services 的现代应用程序创新一直是 Amazon 公司坚持追求的核心目标。约20年前,我们经历了一次彻底的转型,旨在建立起“发明、发布、再发明、再发布、重新开始、洗牌、再重复”的快速迭代流程。正是此番探索,彻底改变了我们构建应…...
 
Apache Hadoop、HDFS介绍
目录Hadoop介绍Hadoop集群HDFS分布式文件系统基础文件系统与分布式文件系统HDFS简介HDFS shell命令行HDFS工作流程与机制HDFS集群角色与职责HDFS写数据流程(上传文件)HDFS读数据流程(下载文件)Hadoop介绍 用Java语言实现开源 允许…...
 
python“r e 模块“常见函数详解
正则表达式:英文Regular Expression,是计算机科学的一个重要概念,她使用一种数学算法来解决计算机程序中的文本检索,匹配等问题,正则表达式语言是一种专门用于字符串处理的语言。在很多语言中都提供了对它的支持,re模块…...
 
【数据结构】二叉树的四种遍历方式——必做题
写在前面学完上一篇文章的二叉树的遍历之后,来尝试下面的习题吧开始做题144. 二叉树的前序遍历 - 力扣(LeetCode)94. 二叉树的中序遍历 - 力扣(LeetCode)145. 二叉树的后序遍历 - 力扣(LeetCode)…...
Nginx使用“逻辑与”配置origin限制,修复CORS跨域漏洞
目录1.漏洞报告2.漏洞复现3.Nginx 修复3.1 添加请求头3.2 配置origin限制2.3 调整origin限制1.漏洞报告 漏洞名称: CORS 跨域漏洞等级: 中危漏洞证明: Origin从任何域名都可成功访问,未做任何限制。漏洞危害: 因为同源…...
 
Laravel框架02:路由与控制器
Laravel框架02:路由与控制器一、路由配置文件二、路由参数三、路由别名四、路由群组五、控制器概述六、控制器路由七、接收用户输入一、路由配置文件 以web网页路由文件为例: 默认根路由 路由定义格式Route::请求方式(请求的URL, 匿名函数或控制响应的方…...
【POJ 2418】Hardwood Species 题解(映射)
描述 阔叶树是一种植物群,具有宽阔的叶子,结出果实或坚果,通常在冬天休眠。 美国的温带气候造就了数百种阔叶树种的森林,这些树种具有某些生物特征。例如,虽然橡树、枫树和樱桃都是硬木树,但它们是不同的物…...
React组件之间的通信方式总结(下)
一、写一个时钟 用 react 写一个每秒都可以更新一次的时钟 import React from react import ReactDOM from react-domfunction tick() {let ele <h1>{ new Date().toLocaleTimeString() }</h1>// Objects are not valid as a React child (found: Sun Aug 04 20…...
 
【RabbitMQ笔记07】消息队列RabbitMQ七种模式之Publisher Confirms发布确认模式
这篇文章,主要接收消息队列RabbitMQ七种模式之Publisher Confirms发布确认模式。 目录 一、消息队列 1.1、发布确认模式 1.2、案例代码 (1)引入依赖 (2)编写生产者【消息确认--单条确认】 (3…...
 
【华为OD机试模拟题】用 C++ 实现 - IPv4 地址转换成整数(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明IPv4 地址转换成整数题目输入输出示例一输入输出说明示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,...
闭包与高阶函数
文中内容均来自于曾探《JavaScript设计模式与开发实践》的学习笔记。闭包作用域变量的作用域,就是指变量的有效范围。局部变量、全局变量。变量的搜索是从内到外而非从外到内的。变量的生命周期对于全局变量莱索,全局变量的生命周期是永久的,…...
 
人工智能轨道交通行业周刊-第35期(2023.2.20-2.26)
本期关键词:重庆智慧轨道、智能运维主机、标准轨距、地方铁路公报、景深、机器视觉应用 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通Rai…...
快慢指针判断链表是否有环
快慢指针判断链表是否有环 单链表有可能存在环,有些情况下要判断一个单链表是否有环。数组的有个快慢指针的方法,其实单链表和数组有相似的地方,可以使用快慢指针的方法。具体做法如下: 首先创建两个指针,它们初始时…...
《MongoDB入门教程》第26篇 聚合统计之$max/$min表达式
本文将会介绍两个 MongoDB 表达式,返回一组数据中最大值的 $max 表达式,以及返回一组数据中最小值的 $min 表达式。 $max 表达式 $max 表达式用于返回一组数据中的最大值,语法如下: { $max: <expression> }$max 表达式在…...
 
FPGA纯verilog解码SDI视频 纯逻辑资源实现 提供2套工程源码和技术支持
目录1、前言2、硬件电路解析SDI摄像头Gv8601a单端转差GTX解串SDI解码VGA时序恢复YUV转RGB图像输出FDMA图像缓存HDMI输出3、工程1详解:无缓存输出4、工程2详解:缓存3帧输出5、上板调试验证并演示6、福利:工程代码的获取1、前言 FPGA实现SDI视…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
 
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
 
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
 
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
 
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
 
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
 
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
