PSP - 蛋白质复合物 AlphaFold2 Multimer MSA Pairing 逻辑与优化
欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/134144591

在蛋白质复合物结构预测中,当序列 (Sequence) 是异源多链时,无论是AB,还是AABB,都需要 MSA 配对,即 MSA Pairing。在 MSA 的搜索过程中,按照单链维度进行搜索,通过 MSA Pairing 进行合并,作为特征输入至 Multimer 结构预测。
控制 MSA 数量,包括需要 3 个超参数:
max_msa_crop_size,用于确定 MSA 的长度,默认设置 2048max_msa_clusters,用于确定推理中 MSA 特征的长度,默认设置 252max_extra_msa,用于限制推理中 Extra MSA 特征的长度,默认设置 1024
这 3 个参数,依次设定,从前到后相互包含,可以根据不同情况进行调节,其中 第1个参数 > (第2个参数 + 第3个参数)。
默认单链的搜索文件如下:
bfd_uniref_hits.a3m
mgnify_hits.sto
pdb_hits.sto
uniprot_hits.sto
uniref90_hits.sto
其中 uniref90_hits.sto 用于 MSA Pairing,pdb_hits.sto 用于 模版 (Template) 特征,bfd_uniref_hits.a3m、mgnify_hits.sto、uniref90_hits.sto,用于单链 MSA 特征。我们以 ABAB 格式的 4 链 PDB 进行假设。
优化1:MSA Pairing 默认只使用 uniprot_hits.sto,当数量较少时,可以使用 uniref90_hits.sto 作为补充。
源码 openfold/data/data_pipeline.py,如下:
# ++++++++++ 补充 MSA Pairing 源的逻辑 ++++++++++ #
# 标准的 AF2 Multimer 流程中没用 target_seq,即 target_seq 是 None
# logger.info(f"[CL] target_seq: {target_seq}")
msa = parsers.parse_stockholm(result, query_seq=target_seq)
msa = msa.truncate(max_seqs=self._max_uniprot_hits)msa_extra = parsers.parse_stockholm(result_extra, query_seq=target_seq)
msa_extra = msa_extra.truncate(max_seqs=self._max_uniprot_hits)logger.info(f"[CL] all_seq msa: {len(msa.sequences)}, add uniref msa: {len(msa_extra.sequences)}")
all_seq_features = make_msa_features([msa, msa_extra])
logger.info(f"[CL] all_seq msa: {all_seq_features['msa'].shape}")
# ++++++++++ 补充 MSA Pairing 源的逻辑 ++++++++++ #
优化2:当单链 MSA 数量较少时,使用 uniprot_hits.sto 作为 MSA 的补充。
源码 openfold/data/data_pipeline.py,如下:
# ++++++++++ 补充单链 MSA 序列的逻辑 ++++++++++ #
msa_seq_list = set()
for _, msa in msa_dict.items():for sequence_index, sequence in enumerate(msa.sequences):msa_seq_list.add(sequence)
msa_seq_list = list(msa_seq_list)
thr = 64 # 这影响没有 pairing 的序列,数值不宜过大
msa_size = len(msa_seq_list)
if msa_size < thr and uniprot_path:logger.info(f"[CL] single msa too small {msa_size} < {thr} (thr), uniprot_path: {uniprot_path}")with open(uniprot_path) as f:sto_string = f.read()msa_obj = parsers.parse_stockholm(sto_string)msa_seq_list += msa_obj.sequencesmsa_seq_list = list(set(msa_seq_list))diff_size = len(msa_seq_list) - msa_sizelogger.info(f"[CL] single msa from {msa_size} to {len(msa_seq_list)}, add {diff_size}")if diff_size > 0:msa_list.append(msa_obj) # 加入额外的数据
# ++++++++++ 补充单链 MSA 序列的逻辑 ++++++++++ #
优化3:当 MSA Pairing 数量过少时,尤其是 全链 Pairing 数量过少时,使用 其他物种 的 MSA 作为 MSA Pairing 的补充。
源码 openfold/data/msa_pairing.py,如下:
# ++++++++++ 补充 MSA Pairing 的逻辑 ++++++++++ #
thr = 128
num_all_pairing = len(tmp_dict1[num_examples])
if num_all_pairing < thr:logger.info(f"[CL] full msa pairing ({num_examples} chains) is too little ({num_all_pairing}<{thr}), "f"so add more!")tmp_dict2 = process_species(num_examples, common_species, all_chain_species_dict, prokaryotic, is_fake=True)# all_paired_msa_rows_dict = tmp_dict2tmp_item = list(tmp_dict1[num_examples]) + list(tmp_dict2[num_examples]) # 增补部分 MSAtmp_item = np.unique(tmp_item, axis=0) # 先去重tmp_item = tmp_item[:thr] # 再截取if len(tmp_item) > num_all_pairing:all_paired_msa_rows_dict[num_examples] = tmp_itemlogger.info(f"[CL] full msa pairing ({num_examples} chains) add to {len(tmp_item)}! ")
# ++++++++++ 补充 MSA Pairing 的逻辑 ++++++++++ #
假设序列是 AABB,顺序不重要,也可以是 ABAB,链式是 N c N_{c} Nc,MSA Pairing 只考虑 msa_all_seq 字段 (uniprot_hits 和 uniref90_hits 优化),即,A 链包括 MSA 数量是 L A L_{A} LA,B 链包括 MSA 数量是 L B L_{B} LB,MSA Pairing 数量是 L P a b L_{P_{ab}} LPab 。其中 MSA Pairing 包括 2 至 N c N_{c} Nc 个,例如 4 链,就是可以 Pairing 成2链、3链、4链等 4 种情况,只有 1 链时,被抛弃。
源码 openfold/data/msa_pairing.py,即:
# Skip species that are present in only one chain.
if species_dfs_present <= 1:continue
在 MSA Pairing 的过程中,修改 msa_all_seq 字段的 MSA 顺序,同时去除 只有 1 链 (没有配对) 的情况,假设最终 MSA Pairing 的数量是 L P a b L_{P_{ab}} LPab,全部链都是相同的,填补空位。
通过 msa_pairing.merge_chain_features() 函数,将单链 MSA 的合并至一起,即 bfd_uniref_hits.a3m、mgnify_hits.sto、uniref90_hits.sto 的全部 MSA,组成 msa 字段特征。其中 MSA 参数1 即 max_msa_crop_size,表示合并 MSA 的最大数量。例如 链 A 的 msa_all_seq 数量是 900,最大是 2048,则 单链 msa 字段的数量最多是 1148,其余随机舍弃,即1148+900=2048。
源码 openfold/data/msa_pairing.py,注意 feat_all_seq 在前,feat 在后,即 MSA Pairing 更重要,即:
def _concatenate_paired_and_unpaired_features(example: pipeline.FeatureDict,
) -> pipeline.FeatureDict:"""Merges paired and block-diagonalised features."""features = MSA_FEATURESfor feature_name in features:if feature_name in example:feat = example[feature_name]feat_all_seq = example[feature_name + "_all_seq"]merged_feat = np.concatenate([feat_all_seq, feat], axis=0)example[feature_name] = merged_featexample["num_alignments"] = np.array(example["msa"].shape[0], dtype=np.int32)return example
通过 openfold/data/data_transforms_multimer.py 函数,将输入的 msa 特征 (合并 msa 和 msa_all_seq) 进行截取,先截取 max_seq,再截取 max_extra_msa_seq,即第 2 个和第 3 个参数,max_msa_clusters 和 max_extra_msa,作为最终的训练或推理 msa 特征。
logits += cluster_bias_mask * inf
index_order = gumbel_argsort_sample_idx(logits, generator=g)
logger.info(f"[CL] truly use msa raw size: {len(index_order)}, msa: {max_seq}, extra_msa: {max_extra_msa_seq}")
sel_idx = index_order[:max_seq]
extra_idx = index_order[max_seq:][:max_extra_msa_seq]for k in ["msa", "deletion_matrix", "msa_mask", "bert_mask"]:if k in batch:batch["extra_" + k] = batch[k][extra_idx]batch[k] = batch[k][sel_idx]
通过不同的训练模型,与不同的参数,进行蛋白质复合物的结构预测。
相关文章:
PSP - 蛋白质复合物 AlphaFold2 Multimer MSA Pairing 逻辑与优化
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134144591 在蛋白质复合物结构预测中,当序列 (Sequence) 是异源多链时,无论是AB,还是AABB,都需要 …...
C++中vec.size()-1的坑
问题描述:如下代码, #include <iostream> #include <vector>using namespace std;int main() {vector<int> vec {};for (int i 0; i < vec.size() - 1; i) {cout << "i " << i << ", vec[i] …...
Flask Shell 操作 SQLite
一、前言 这段时间在玩Flask Web,发现用Flask Shell去操作SQLite还是比较方便的。今天简单地介绍一下。 二、SQLite SQLite是一种嵌入式数据库,它的数据库就是一个文件,处理速度快,经常被集成在各种应用程序中,在IO…...
Mybatis—XML配置文件、动态SQL
学习完Mybatis的基本操作之后,继续学习Mybatis—XML配置文件、动态SQL。 目录 Mybatis的XML配置文件XML配置文件规范XML配置文件实现MybatisX的使用 Mybatis动态SQL动态SQL-if条件查询 \<if\>与\<where\>更新员工 \<set\>小结 动态SQL-\<forea…...
excel求差公式怎么使用?
利用excel求差,可能有许多的小伙伴已经会了,不过还是存在一些不太熟悉的朋友们,所以这里有必要讲解一下。其实求差的实现主要就是一个公式,就是用一个单元格中的数字“减去”另一个单元格中的数字“等于”第三个单元格。此公式掌握…...
高效分割分段视频:提升您的视频剪辑能力
在数字媒体时代,视频剪辑已经成为一项重要的技能。无论是制作个人影片、广告还是其他类型的视频内容,掌握高效的视频剪辑技巧都是必不可少的。本文将介绍如何引用云炫AI智剪高效地分割和分段视频,以提升您的视频剪辑能力。以下是详细的操作步…...
【c++|opencv】二、灰度变换和空间滤波---2.直方图和均衡化
every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 图像直方图、直方图均衡化 1. 图像直方图 #include <iostream> #include <opencv2/opencv.hpp>using namespace cv; using namespace std;…...
【Windows】线程同步之信号量(Semaphores)
概述: semaphores 的说明和使用 微软官方文档: Semaphore Objects - Win32 apps | Microsoft Learn Semaphores是解决各种 producer/consumer问题的关键要素。这种问题会存有一个缓冲区,可能在同一时间内被读出数据或被写入数据。 理论可以证…...
二叉树问题——前中后遍历数组构建二叉树
摘要 利用二叉树的前序,中序,后序,有序数组来构建相关二叉树的问题。 一、构建二叉树题目 105. 从前序与中序遍历序列构造二叉树 106. 从中序与后序遍历序列构造二叉树 889. 根据前序和后序遍历构造二叉树 617. 合并二叉树 226. 翻转二…...
Java保留n位小数的方法(超简洁)
要输出double类型保留n位小数的几种方法如下: 我们以保留6位小数为例 方法一:使用DecimalFormat类 import java.text.DecimalFormat;public class Main {public static void main(String[] args) {double number 3.141592653589793;DecimalFormat df …...
JavaEE-博客系统1(数据库和后端的交互)
本部分内容包括网站设计总述,数据库和后端的交互; 数据库操作代码如下: -- 编写SQL完成建库建表操作 create database if not exists java_blog_system charset utf8; use java_blog_system; -- 建立两张表,一个存储博客信息&am…...
【unity/vufornia】Duplicate virtual buttons with name.../同一个ImageTarget上多个按钮失灵
问题:在同一个ImageTarget上添加多个按钮时无法触发对应按钮的事件。 解决过程: 1.查看报错:“Duplicate virtual buttons with name...”这一行,顾名思义,命名重复。 2.英文搜索到以下文章,应该在inspe…...
Apache ActiveMQ 远程代码执行漏洞复现(CNVD-2023-69477)
Apache ActiveMQ 远程代码执行RCE漏洞复现(CNVD-2023-69477) 上周爆出来的漏洞,正好做一下漏洞复现,记录一下 1.漏洞描述 Apache ActiveMQ 中存在远程代码执行漏洞,具有 Apache ActiveMQ 服务器TCP端口ÿ…...
项目管理-科学管理基础-线性规划介绍及例题
项目管理中的线性规划是什么? 在项目管理中,线性规划是一种数学建模和优化技术,用于解决资源分配和进度规划的问题。线性规划的目标是在给定的资源限制下,找到最佳的资源分配方案,以满足项目的需求并优化特定的目标,如成本最小化或时间最短化。 线性规划的基本元素包括…...
如何利用自定义数据对象(元数据)实现全场景身份数据治理
在数字化时代背景下,5G、云计算、大数据、物联网、人工智能等技术的发展,为企业数据管理提供了基础技术支撑。数字化浪潮推动企业快速升级迭代,在数据管理和数字化转型过程中,企业内部的数据情况常常错综复杂,并伴随着…...
腾讯云轻量级服务器哪个镜像比较好?
腾讯云轻量应用服务器镜像是什么?镜像就是操作系统,轻量服务器镜像系统怎么选择?如果是用来搭建网站腾讯云百科txybk.com建议选择选择宝塔Linux面板腾讯云专享版,镜像系统根据实际使用来选择,腾讯云百科来详细说下腾讯…...
SC密封件的材料成分
SC密封件也称为轴密封件,是许多机械系统中的关键组件,提供防止润滑剂泄漏和污染物进入的屏障。但SC密封件是由什么材料制成的呢? SC密封型材由带有橡胶涂层的单个金属保持架和带有集成弹簧的主密封唇组成。这种材料的组合为密封件提供了其基本特性&…...
常用 sqlite3 命令
本次将向您讲解 SQLite 编程人员所使用的简单却有用的命令。这些命令被称为 SQLite 的点命令,这些命令的不同之处在于它们不以分号 ; 结束。 让我们在命令提示符下键入一个简单的 sqlite3 命令,在 SQLite 命令提示符下,您可以使 用各种 …...
SpringMVC Day 08 : 文件上传下载
前言 文件上传和下载是 Web 开发中的重要环节,但它们往往不那么容易实现。幸运的是,Spring MVC 提供了一套简单而又强大的解决方案,让我们可以专注于业务逻辑,而不必过多关注底层的文件处理细节。 在本篇博客中,我们…...
【热带气旋】基本介绍:定义、标准、结构等
热带气旋基本介绍 热带气旋(Tropical Cyclone, TC)1 热带气旋定义2 热带气旋标准2.1 热带低压(Tropical Depression)2.2 热带风暴(Tropical storm)2.3 强热带风暴(Severe tropical storm&#x…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...
Easy Excel
Easy Excel 一、依赖引入二、基本使用1. 定义实体类(导入/导出共用)2. 写 Excel3. 读 Excel 三、常用注解说明(完整列表)四、进阶:自定义转换器(Converter) 其它自定义转换器没生效 Easy Excel在…...
基于Java项目的Karate API测试
Karate 实现了可以只编写Feature 文件进行测试,但是对于熟悉Java语言的开发或是测试人员,可以通过编程方式集成 Karate 丰富的自动化和数据断言功能。 本篇快速介绍在Java Maven项目中编写和运行测试的示例。 创建Maven项目 最简单的创建项目的方式就是创建一个目录,里面…...
【2D与3D SLAM中的扫描匹配算法全面解析】
引言 扫描匹配(Scan Matching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3D SLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注…...
