当前位置: 首页 > news >正文

分布式消息队列:RabbitMQ(1)

目录

一:中间件

二:分布式消息队列 

2.1:是消息队列

2.1.1:消息队列的优势

2.1.1.1:异步处理化

2.1.1.2:削峰填谷

2.2:分布式消息队列

2.2.1:分布式消息队列的优势

2.2.1.1:数据的持久化

2.2.1.2:可扩展性

2.2.1.3:应用解耦

2.2.1.4:发送订阅 

2.2.2:分布式消息队列的应用场景 

三:Rabbitmq

3.1:基本概念

3.2:快速入门 

3.2.1:引入消息队列Java客户端

3.2.2:单消费开发生产者和消费者

 3.2.3:多消费开发生产者和消费者

3.3.3:交换机

3.3.3.1:交换机的类别

a):fanout


一:中间件

连接多个系统,帮助多个系统紧密协作的技术(组件)

二:分布式消息队列 

2.1:是消息队列

概念:存储消息的队列

关键词:存储,消息,队列

存储:存储数据

消息:某种数据结构,比如l字符串,对象,二进制数据,json等

队列:先进先出的数据结构

作用:在不同的系统下,应用之间实现消息的传输,不需要考虑传输应用的编程语言,系统和,框架等等,实现应用解耦的作用。

        eg:可以让Java开发的应用发消息,让php开发的应用收消息。

 针对生产者来说:不需要关心消费者什么时候接受消息,什么时候消费,我只需要把我的工作完成就好了。生产者和消费者之间实现了解耦。

针对上图,同样我们会发现,当小李要别的书籍的时候,小王也可以将别的书籍放到消息队列中。生产者和消费者从某一种程度上实现了解耦合。

2.1.1:消息队列的优势

2.1.1.1:异步处理化

生产者发送消息之后,可以继续去忙别的,消费者什么时候消费都可以,不产生阻塞。

2.1.1.2:削峰填谷

先把用户的请求放到消息队列种,消费者(实际执行操作的应用)可以按照自己的需求,慢慢去取。

举个栗子:

原本:

12点时来了10万个请求,原本情况下,10万个请求都在系统内部立刻处理,很快系统压力过大宕机。

现在:

把10万个请求放到消息队列中,处理系统以自己的恒定速率(比如每秒1个)慢慢执行,稳定处理。

2.2:分布式消息队列

2.2.1:分布式消息队列的优势

分布式消息队列继承于消息队列的优势,并进行了一部分的拓展。

2.2.1.1:数据的持久化

把消息集中存储在硬盘当中,服务器重启就不会丢失。

2.2.1.2:可扩展性

可以根据需求,随时增加(或减少)节点,继续保持稳定的服务。

2.2.1.3:应用解耦

可以连接不同语言(Java,PHP),框架开发的系统,让这些系统读取数据。

示例:

以前的项目:

加了分布式消息队列之后的项目: 

1:一个系统挂了,不影响另一个系统。

2:系统挂了之后并恢复,仍然可以从消息队列中取消息

3:只要发送消息到队列,就可以立即进行返回,不用同步调用所有系统,性能更高

2.2.1.4:发送订阅 

假设情景:当QQ进行了一部分改革之后,其他使用QQ的APP也应该处理
这部分改革。
QQ做了一个情景,要让其他系统知道,比如公告消息。如果QQ一次性给这些应用发消息,所引出的问题如下:
1.每次发通知都要调用很多系统,很麻烦,很可能失败
2.不知道哪个系统需要这些QQ的改革。
解决方案:大的核心系统始终往消息队列发消息,其他的系统都去订阅这个消息队列的消息,用的时候进行取就OK。

2.2.2:分布式消息队列的应用场景 

1:耗时场景。

2:高并发场景。

3:分布式系统的协作。(跨团队,跨业务合作,应用解耦)

4:强稳定的场景(金融业务,持久化,可靠性,削锋填谷)  

三:Rabbitmq

特点:生态好,易学习,易于理解,时效性强,支持不同语言的客户端,扩展性,可用性都很不错。

3.1:基本概念

AMPQ协议:Rabbitmq是遵循AMPQ协议的一种消息中间件。

生产者:发消息到交换机

消费者:收消息的,从某个队列中取消息

交换机(exchange):负责把消息转发到对应的队列

队列(Queue):存储消息的

路由(Rountes):转发,怎么把一个消息从一个地方转发到另一个地方(比如生产者转发到某个队列)

Rabbitmq:端口占用   5672:程序连接的端口 15672:管理界面端口

Rabbitmq的安装:https://blog.csdn.net/qq_25919879/article/details/113055350

管理器页面打不开:http://t.csdnimg.cn/6FqZl

3.2:快速入门 

3.2.1:引入消息队列Java客户端

<dependency><groupId>com.rabbitmq</groupId><artifactId>amqp-client</artifactId><version>5.17.0</version></dependency>

3.2.2:单消费开发生产者和消费者

生产者端代码:

public class SingeProducer {private final static String QUEUE_NAME = "hello";public static void main(String[] argv) throws Exception {//创建连接工厂ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");try (Connection connection = factory.newConnection();//频道相当于客户端(jdbcClient,redisClient),提供了和消队列server建立通信,程序通过channel进行发送消息Channel channel = connection.createChannel()) {//创建消息队列,第二个参数(durable):是否开启持久化,第三个参数exclusiove:是否允许当前这个创建消息队列的//连接操作消息队列 第四个参数:没有人使用队列,是否需要删除channel.queueDeclare(QUEUE_NAME, false, false, false, null);//发送消息String message = "Hello World!";channel.basicPublish("", QUEUE_NAME, null, message.getBytes(StandardCharsets.UTF_8));System.out.println(" [x] Sent '" + message + "'");}}
}

消费者代码:

public class SingeConsumer {private final static String QUEUE_NAME = "hello";public static void main(String[] argv) throws Exception {//创建连接工厂ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");//创建频道,提供通信Connection connection = factory.newConnection();Channel channel = connection.createChannel();channel.queueDeclare(QUEUE_NAME, false, false, false, null);System.out.println(" [*] Waiting for messages. To exit press CTRL+C");//如何处理消息DeliverCallback deliverCallback = (consumerTag, delivery) -> {String message = new String(delivery.getBody(), "UTF-8");System.out.println(" [x] Received '" + message + "'");};channel.basicConsume(QUEUE_NAME, true, deliverCallback, consumerTag -> { });}
}

 3.2.3:多消费开发生产者和消费者

场景:一个生产者给队列里面发了一条消息,多个消费者进行消费。适用于多个机器同时去接收并处理任务(每个机器处理任务有限)

队列持久化:

durable:

参数设置为true,服务器队列不丢失

 channel.queueDeclare(TASK_QUEUE_NAME, true, false, false, null);

 消息持久化:

 指定MessageProperties.PERSISTENY_TEXT_PLAIN参数

    channel.basicPublish("", TASK_QUEUE_NAME,MessageProperties.PERSISTENT_TEXT_PLAIN,message.getBytes("UTF-8"));

生产者端代码:

public class MultiProducer {private static final String TASK_QUEUE_NAME = "multi_queue";public static void main(String[] argv) throws Exception {ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");try (Connection connection = factory.newConnection();Channel channel = connection.createChannel()) {channel.queueDeclare(TASK_QUEUE_NAME, true, false, false, null);Scanner scanner=new Scanner(System.in);while(scanner.hasNext()){String message = scanner.nextLine();channel.basicPublish("", TASK_QUEUE_NAME,MessageProperties.PERSISTENT_TEXT_PLAIN,message.getBytes("UTF-8"));System.out.println(" [x] Sent '" + message + "'");}}}
}

消费者代码: 

在消费者代码中,如何测验一个消费者只能取一个任务,我们利用for循环来进行解决。

指定确认某条消息:

第一个参数:获取消息的信息

第二个参数:如果是true,把所有的历史消息全都确认了。如果为false,取出当前的消息。

   //第二个参数:是否一次性取所有的消息。如果为true,则要取所有的挤压在消息队列中的消息//如果为false,则为一次性取一个消息channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);

指定拒绝某条消息

第一个参数:获取消息的信息

第二个参数:如果是true,则代表是否要拒绝所有的历史消息。

第三个参数:如果是false, 则代表失败的任务是否要重新入队。

  channel.basicNack(delivery.getEnvelope().getDeliveryTag(),false,false);
public class MultiConsumer {private static final String TASK_QUEUE_NAME = "multi_queue";public static void main(String[] argv) throws Exception {//建立连接ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");final Connection connection = factory.newConnection();for (int i = 0; i <= 2; i++) {final Channel channel = connection.createChannel();int finalI=i;//声明队列channel.queueDeclare(TASK_QUEUE_NAME, true, false, false, null);System.out.println(" [*] Waiting for messages. To exit press CTRL+C");//控制单个消费者的任务积压数:每个消费者最多处理一个任务,每个消费者智能处理一个任务channel.basicQos(1);//处理从队列中取的的消息DeliverCallback deliverCallback = (consumerTag, delivery) -> {String message = new String(delivery.getBody(), "UTF-8");try {//处理工作System.out.println(" [x] Received '" +"编号:"+finalI+ message + "'");//停20秒模拟一个机器处理工作能力有限Thread.sleep(20000);//第二个参数:是否一次性取所有的消息。如果为true,则要取所有的挤压在消息队列中的消息//如果为false,则为一次性取一个消息channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);} catch (InterruptedException e) {throw new RuntimeException(e);} finally {System.out.println(" [x] Done");channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);}};//开启消费监听channel.basicConsume(TASK_QUEUE_NAME, false, deliverCallback, consumerTag -> { });}}}

3.3.3:交换机

一个生产者给多个队列发消息,一个生产者对多个队列。交换机:转发功能,怎么把消息转发到不同的队列上。

3.3.3.1:交换机的类别
a):fanout

场景:很适用于发布订阅的场景。

特点:消息会被转发到所有绑定到交换机的队列。

生产者代码:当生产者发送消息后,由交换机放到消息队列中,消费者从消息队列中取。

public class FonoutProducer {private static final String EXCHANGE_NAME = "1";public static void main(String[] argv) throws Exception {ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");try (Connection connection = factory.newConnection();Channel channel = connection.createChannel()) {//创建交换机channel.exchangeDeclare(EXCHANGE_NAME, "fanout");Scanner scanner=new Scanner(System.in);while(scanner.hasNext()){String message = scanner.nextLine();channel.basicPublish(EXCHANGE_NAME, "", null, message.getBytes("UTF-8"));System.out.println(" [x] Sent '" + message + "'");}}}}

消费者代码:

public class FonoutConsumer {private static final String EXCHANGE_NAME = "1";public static void main(String[] argv) throws Exception {ConnectionFactory factory = new ConnectionFactory();factory.setHost("localhost");Connection connection = factory.newConnection();Channel channel = connection.createChannel();Channel channel2= connection.createChannel();//声明交换机//创建队列,随机分配一个队列名称channel.exchangeDeclare(EXCHANGE_NAME, "fanout");String queueName="xiaowang";channel.queueDeclare(queueName,true,false,false,null);channel.queueBind(queueName, EXCHANGE_NAME, "");channel2.exchangeDeclare(EXCHANGE_NAME, "fanout");String queueName2="xiaoli";channel2.queueDeclare(queueName2,true,false,false,null);channel2.queueBind(queueName2,EXCHANGE_NAME,"");System.out.println(" [*] Waiting for messages. To exit press CTRL+C");DeliverCallback deliverCallback1 = (consumerTag, delivery) -> {String message = new String(delivery.getBody(), "UTF-8");System.out.println(" [小王] Received '" + message + "'");};DeliverCallback deliverCallback2 = (consumerTag, delivery) -> {String message = new String(delivery.getBody(), "UTF-8");System.out.println(" [小李] Received '" + message + "'");};channel.basicConsume(queueName, true, deliverCallback1, consumerTag -> { });channel.basicConsume(queueName2, true, deliverCallback2, consumerTag -> { });}}

运行结果:

相关文章:

分布式消息队列:RabbitMQ(1)

目录 一:中间件 二:分布式消息队列 2.1:是消息队列 2.1.1:消息队列的优势 2.1.1.1:异步处理化 2.1.1.2:削峰填谷 2.2:分布式消息队列 2.2.1:分布式消息队列的优势 2.2.1.1:数据的持久化 2.2.1.2:可扩展性 2.2.1.3:应用解耦 2.2.1.4:发送订阅 2.2.2:分布式消息队列…...

Redis集群脑裂

1. 概述 Redis 集群脑裂&#xff08;Cluster Split Brain&#xff09;是指在 Redis 集群中&#xff0c;由于网络分区或通信问题&#xff0c;导致集群中的节点无法相互通信&#xff0c;最终导致集群内部发生分裂&#xff0c;出现多个子集群&#xff0c;每个子集群认为自己是有效…...

GEE教程——随机样本点添加经纬度信息

简介: 有没有办法在绘制散点图后将样本的坐标信息(纬度/经度)添加到.CSV表格数据中? 这里我们很多时候我们需要加载样本点的基本信息作为属性,本教程主要的目的就是我们选取一个研究区,然后产生随机样本点,然后利用坐标函数,进行样本点的获取经纬度,然后通过循环注意…...

PyTorch入门学习(十):神经网络-非线性激活

目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例&#xff1a;应用非线性激活函数 一、简介 在神经网络中&#xff0c;激活函数的主要目的是引入非线性特性&#xff0c;从而使网络能够对非线性数据建模。如果只使用线性变换&#xff0c;那么整个神…...

《golang设计模式》第三部分·行为型模式-03-解释器模式(Interpreter)

文章目录 1. 概述1.1 角色1.2 类图1.3 优缺点 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 解释器模式&#xff08;Interpreter&#xff09;是用于表达语言语法树和封装语句解释&#xff08;或运算&#xff09;行为的对象。 1.1 角色 AbstractExpression&#xff08;抽象表…...

Windows个性化颜色睡眠后经常改变

问题再现 我把系统颜色换成了一种红色&#xff0c;结果每次再打开电脑又变回去了&#xff08;绿色&#xff09;&#xff1b; 原因是因为wallpaper engine在捣蛋 需要禁用修改windows配色这一块选项&#xff1b; 完事&#xff01;原来是wallpaper engine的问题&#xff1b;...

calico ipam使用

calico ipam使用 前面的文章pod获取ip地址的过程中提到过calico使用的IP地址的管理模块是其自己开发的模块calico-ipam,本篇文章来讲述下其具体用法。 一、环境信息 版本信息 本环境使用版本是k8s 1.25.3 [rootnode1 ~]# kubectl get node NAME STATUS ROLES …...

Redis系统学习(高级篇)-Redis持久化-AOF方式

目录 一、是什么AOF&#xff1f; 二、AOF如何开启 以及触发策略有哪些 三、AOF文件重写 四、AOF与RDB对比 一、是什么AOF&#xff1f; 就是通过每次记录写操作&#xff0c;最终通过来依次这些命令来达到恢复数据的目的 二、AOF如何开启 以及触发策略有哪些 save "&q…...

云安全-云原生基于容器漏洞的逃逸自动化手法(CDK check)

0x00 docker逃逸的方法种类 1、不安全的配置&#xff1a; 容器危险挂载&#xff08;挂载procfs&#xff0c;Scoket&#xff09; 特权模式启动的提权&#xff08;privileged&#xff09; 2、docker容器自身的漏洞 3、linux系统内核漏洞 这里参考Twiki的云安全博客&#xff0c;下…...

精选10款Python可视化工具,请查收

今天我们会介绍一下10个适用于多个学科的Python数据可视化库&#xff0c;其中有名气很大的也有鲜为人知的。 1、matplotlib matplotlib 是Python可视化程序库的泰斗。经过十几年它仍然是Python使用者最常用的画图库。它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近…...

大数据(21)-skew-GroupBy

&&大数据学习&& &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 承认自己的无知&#xff0c;乃是开启智慧的大门 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一下博主哦&#x1f91…...

window压缩包安装mongodb并注册系统服务

下载解压包 https://fastdl.mongodb.org/windows/mongodb-windows-x86_64-5.0.22.zip启动mongod 解压压缩包 至 d:\mongodb目录中&#xff0c;创建目录data、logs。并创建配置文件mongod.conf输入以下配置 dbpath d:\mongodb\data logpath d:\mongodb\logs\mongo.log loga…...

【Java每日一题】——第四十五题:综合案例:模拟物流快递系统。(2023.11.1)

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…...

二十二、Arcpy批量波段组合——结合Landat数据城市建成区提取

一、前言 其实波段组合和GIS中栅格计算有点类似,实质上就是对每个像素点对应的DN值进行数学计算,也就是可以进行运算表达式是三个或多个变量相加、相减……每一个变量对应于一个图像数据,对这三个或多个图像数据求值并输出结果图像。 二、具体操作 1、实验具体目标 将202…...

电脑上数据恢复的详细操作

在日常使用电脑过程中&#xff0c;我们可能会遇到数据丢失的情况。无论是因为误删除、格式化、病毒攻击还是硬件故障&#xff0c;数据恢复都是我们迫切需要解决的问题。本文将介绍电脑数据恢复的详细操作步骤&#xff0c;帮助读者在面临数据丢失时能够迅速地恢复重要文件。 一…...

3.1 linux控制内核打印printk demsg DEBUG

本文主要内容: 1 列出内核打印级别 2 修改内核打印级别 方法1 编译时 方法2 uboot时 方法3 启动后 3 DEBUG宏控制妙用 4 内存中各种打印函数封装 5 测试示例代码 1 打印级别 #define KERN_EMERG "<0>" /* system is unusable */ #define KERN_ALERT …...

关于爬虫API常见的技术问题和解答

随着互联网的快速发展&#xff0c;数据获取变得越来越重要。爬虫API作为一种高效的数据获取手段&#xff0c;被广泛应用于各种场景。然而&#xff0c;在实际使用过程中&#xff0c;我们经常会遇到一些技术问题。本文将详细介绍爬虫API的常见技术问题及相应的解决方案。 一、爬…...

在CentOS上用yum方式安装MySQL8过程记录

此文参考官方文档一步一步记录安装到正常运行全过程 安装环境&#xff1a;centos7 mysql版本&#xff1a;8.0.35 安装过程主要参考下面两边文章&#xff1a; 1.官方文档 https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html 2.linux yum安装mysql8 安…...

CEYEE希亦新品洗地机Pro系列发布, 领跑行业的「水汽混动」技术的旗舰新杰作

CEYEE希亦全新一代洗地机T800 PRO正式上市&#xff0c;采用双滚刷&#xff0c;双倍活水洗拖洗方式&#xff0c;达到拖一遍抵两遍&#xff0c;相对于10倍洁净效果&#xff01; 这款希亦Pro系列产品不仅刷新了洗地机行业技术水准&#xff0c;满足了用户愈发极致的清洁效能追求&a…...

为什么要安装防静电门禁闸机

安装防静电门禁闸机可以带来以下几个方面的好处&#xff1a; 防止静电干扰&#xff1a;静电是一种非常危险的物理现象&#xff0c;它可以对电子元器件、电路板和其他敏感设备造成损害&#xff0c;甚至导致设备故障和生产中断。防静电门禁闸机可以有效地防止静电的产生和传导&am…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...