当前位置: 首页 > news >正文

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

1. 线性无关 Independence

Suppose A is m by n with m<n (more unknowns than equations)

Then there are nonzero solutions to Ax=0 

Reason: there will be free variables! A中具有至少一个自由变量,那么Ax=0一定具有非零解。A的列向量可以线性组合得到零向量,所以A的列向量是线性相关的。

independence:vectors X1, X2,...,Xn are independent if no combination gives zero vectors (expect the zero comb. all Ci =0)

 

Repeat when v1,v2,..., vn are columns of A 

they are independent if nullspace of A is zero vector , rank=n , N(A)={0}, no free variables 若这些向量作为列向量构成矩阵A,则方程Ax=0只有零解x=0,或称矩阵A的零空间只有零向量

 they are dependent if Ac=0 for some nonzero C, rank<n , Yes free variables

结论:

此矩阵构成的方程Ax=0必有非零解,即三个向量线性相关

矩阵A的列向量为线性无关,则A所有的列均为主元列,没有自由列,矩阵的秩为n。

A的列向量为线性相关,则矩阵的秩小于n,并且存在自由列

2. 张成空间 Spanning a space

vectors v1, v2, v3, ..., vn span a space means: The space consists of all combs. of those vectors 

3. 基与维数Basis &Dimension

Basis for a space is a sequance of vectors v1, v2, ..., vd with 2 properties:

1. they are independent

2. they span the space

空间的基告诉我们了空间的一切信息

Example: Space is R3 

standard: one basis 

Rn : n vectors give basis if the nxn matrix with those cols is invertible

3.1 子空间的基 Basis for a subspace

 可以张成R3中的一个平面,但是它们无法成为R3空间的一组基

Given a space: Every basis for the space has the same number of vectors (dimension of the space)

3.2 列空间和零空间的基 Basis of a column space and nullspace

讨论列空间:

矩阵A的四个列向量张成了矩阵A的列空间,其中第3列和第4列与前两列线性相关,而前两个列向量线性无关。因此前两列为主元列。他们组成了列空间C(A)的一组基。矩阵的秩为2。

rank矩阵的秩r=# of pivot columns 矩阵主元列的数目=dimension of C(A)列空间的维数

讨论零空间:

必然在零空间N(A)之内

dim N(A)零空间的维数=自由列的数目# of free variables=n-r

相关文章:

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

1. 线性无关 Independence Suppose A is m by n with m<n (more unknowns than equations) Then there are nonzero solutions to Ax0 Reason: there will be free variables! A中具有至少一个自由变量&#xff0c;那么Ax0一定具有非零解。A的列向量可以线性组合得到零向…...

Kubernetes 概述以及Kubernetes 集群架构与组件

目录 Kubernetes概述 K8S 是什么 为什么要用 K8S K8S 的特性 Kubernetes 集群架构与组件 核心组件 Master 组件 Node 组件 ​编辑 Kubernetes 核心概念 常见的K8S按照部署方式 Kubernetes概述 K8S 是什么 K8S 的全称为 Kubernetes,Kubernetes 是一个可移植、可扩…...

GZ035 5G组网与运维赛题第9套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项&#xff08;高职组&#xff09; 赛题第9套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通&#xff08;35分&#xff09; 子任务1&#xff1a;5G公共网络部署与调试&#xff08;15分&#xff09; 子…...

使用Jasypt3.0.3版本对SpringBoot配置文件加密

时间 2023-11-01 使用Jasypt3.0.3版本对SpringBoot配置文件加密 目录 引入依赖使用密钥生成密文配置yml验证是否自动解密 引入依赖 <!--yml 文件加解密--><dependency><groupId>com.github.ulisesbocchio</groupId><artifactId>jasypt-spring-b…...

生成一篇博客,详细讲解springboot的单点登录功能,有流程图,有源码demo

SpringBoot是目前非常流行的一个Java开发框架&#xff0c;它以简洁的配置和快速的开发效率著称。在实际应用中&#xff0c;单点登录是一个非常重要的功能&#xff0c;它可以让用户在多个应用系统中使用同一个账号登录&#xff0c;提高用户体验和安全性。本文将详细讲解如何在Sp…...

Hadoop、Hive安装

一、 工具 Linux系统&#xff1a;Centos&#xff0c;版本7.0及以上 JDK&#xff1a;jdk1.8 Hadoop&#xff1a;3.1.3 Hive&#xff1a;3.1.2 虚拟机&#xff1a;VMware mysql&#xff1a;5.7.11 工具下载地址: https://pan.baidu.com/s/1JYtUVf2aYl5–i7xO6LOAQ 提取码: xavd…...

PHP自定义函数--输入起始日期和解算日期返回日期差几天和 上一个周期的起始结束日期

/** 日期差几天* param beginDate:2018-01-26 endDatee:2018-01-26* return int days* */ function dateDiff($beginDate, $endDate) {$diff date_diff(date_create($beginDate), date_create($endDate))->format(%R%a);return (int)$diff; }/** 返回上一周期的起始和结束日…...

.net 7 上传文件踩坑

(Name “file”) 没加上这个传不进文件 /// <summary>/// 上传单个文件/// </summary>/// <param name"formFile"></param>/// <returns></returns>[HttpPost("UploadFiles")][FunctionAttribute(MuType.Btn, "…...

C++基础算法④——排序算法(快速、归并附完整代码)

快速排序 快速排序是对冒泡排序的一种改进。 它的基本思想是:通过一趟排序将待排记录分割成独立的两部分&#xff0c;其中一部分记录的关键字均比另一部分记录的关键字小&#xff0c;则可分别对这两部分记录继续进行快速排序&#xff0c;以达到整个序列有序。 假设我们现在对 …...

高防CDN如何在防护cc上大显神通

高级防御CDN&#xff08;Content Delivery Network&#xff09;在对抗CC&#xff08;HTTP Flood&#xff09;攻击方面扮演着关键的角色&#xff0c;具备以下重要职能和作用&#xff1a; 流量分散&#xff1a;CC攻击的目标是通过大规模的HTTP请求使服务器过载&#xff0c;从而导…...

解决CSS中height:100%失效的问题

出现BUG的场景&#xff0c;点击退出到登录页面&#xff0c;发现高度不对 上面出现了一种只是占了内容的高度&#xff0c;没有占满100%&#xff0c;为什么会出现这种情况呐&#xff1f; 让div的height"100%"&#xff0c;执行网页时&#xff0c;css先执行到&#xff0…...

小红书穿搭类种草营销怎么做?纯干货

在众多营销方式中&#xff0c;穿搭类种草营销以其独特的优势在小红书平台上崭露头角。穿搭类种草营销&#xff0c;以其独特的优势&#xff0c;成为了品牌和商家推广产品的重要方式。其优势主要体现在以下几个方面&#xff1a; 1. 高度相关性&#xff1a;小红书平台的用户主要是…...

什么是ARFF文件,以.arff结尾

关于arff,主要涉及三个输入类&#xff1a;概念、实例和属性。 1.概念简单而言就是需要被处理的东西&#xff0c; 2. 实例这个词有些陌生&#xff0c;但是可以大致认为其为样本&#xff0c; 3. 属性就是数据表中的一列。 为什么要用arff&#xff1f;&#xff08;arff介绍&#x…...

华为OD机考算法题:计算疫情扩散时间

题目部分 题目计算疫情扩散时间难度难题目说明在一个地图中(地图由 n * n 个区域组成)有部分区域被感染病菌感染区域每天都会把周围(上下左右)的4个区域感染。 请根据给定的地图计算多少天以后&#xff0c;全部区域都会被感染。 如果初始地图上所有区域全部都被感染&#xff0…...

29岁从事功能测试5年被辞,面试4个月还没到工作......

最近一个32岁的老同学因为被公司辞退&#xff0c;聊天过程中找我倾诉&#xff0c;所以写下了这篇文章。 他是15年二本毕业&#xff0c;学的园林专业&#xff0c;人属于比较懒的那种&#xff0c;不爱学习&#xff0c;专业学的也一般。实习期间通过校招找到了一份对口的工作。但…...

再记【fatal error C1001: 内部编译器错误】的一个原因

平台&#xff1a;Windows 11、Visual Studio 2022 报错信息 已启动生成... 1>------ 已启动生成: 项目: PointMatchingModel, 配置: Debug x64 ------ 1>PointMatchingModel.cpp 1>C:\tools\vcpkg\installed\x64-windows\include\pcl\registration\impl\ia_fpcs.hpp…...

数据分析、大数据分析和人工智能之间的区别

数据分析、大数据分析和人工智能近年来十分热门&#xff0c;三者之间看起来有相似之处&#xff0c;也有不同之处。今天就来谈谈三者间的区别。 数据分析 数据分析是指对数据进行分析&#xff0c;从中提取有价值的信息&#xff0c;以支持企业或组织的决策制定。数据分析可以针对…...

Spring系列之基础

目录 Spring概述 Spring的优点 Spring Framework的组成 总结 Spring概述 Spring 是目前主流的 Java Web 开发框架&#xff0c;是 Java 世界最为成功的框架。该框架是一个轻量级的开源框架&#xff0c;具有很高的凝聚力和吸引力。它以Ioc&#xff08;控制反转&#xff09;和…...

Android开发知识学习——TCP / IP 协议族

文章目录 学习资源来自&#xff1a;扔物线TCP / IP 协议族TCP连接TCP 连接的建立与关闭TCP 连接的建立为什么要三次握手&#xff1f; TCP 连接的关闭为什么要四次挥手&#xff1f; 为什么要⻓连接&#xff1f; 常见面试题课后题 学习资源来自&#xff1a;扔物线 TCP / IP 协议…...

思维训练 第四课 省略句

系列文章目录 文章目录 系列文章目录前言一、省略的十五种情况1.并列复合句中某些相同成分的省略2.在用when, while, if, as if, though, although, as ,until, whether等连词引导的状语从句中&#xff0c;如果谓语有be,而主语又跟主句的主语相同或是&#xff08;从句主语是&am…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...