当前位置: 首页 > news >正文

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

1. 线性无关 Independence

Suppose A is m by n with m<n (more unknowns than equations)

Then there are nonzero solutions to Ax=0 

Reason: there will be free variables! A中具有至少一个自由变量,那么Ax=0一定具有非零解。A的列向量可以线性组合得到零向量,所以A的列向量是线性相关的。

independence:vectors X1, X2,...,Xn are independent if no combination gives zero vectors (expect the zero comb. all Ci =0)

 

Repeat when v1,v2,..., vn are columns of A 

they are independent if nullspace of A is zero vector , rank=n , N(A)={0}, no free variables 若这些向量作为列向量构成矩阵A,则方程Ax=0只有零解x=0,或称矩阵A的零空间只有零向量

 they are dependent if Ac=0 for some nonzero C, rank<n , Yes free variables

结论:

此矩阵构成的方程Ax=0必有非零解,即三个向量线性相关

矩阵A的列向量为线性无关,则A所有的列均为主元列,没有自由列,矩阵的秩为n。

A的列向量为线性相关,则矩阵的秩小于n,并且存在自由列

2. 张成空间 Spanning a space

vectors v1, v2, v3, ..., vn span a space means: The space consists of all combs. of those vectors 

3. 基与维数Basis &Dimension

Basis for a space is a sequance of vectors v1, v2, ..., vd with 2 properties:

1. they are independent

2. they span the space

空间的基告诉我们了空间的一切信息

Example: Space is R3 

standard: one basis 

Rn : n vectors give basis if the nxn matrix with those cols is invertible

3.1 子空间的基 Basis for a subspace

 可以张成R3中的一个平面,但是它们无法成为R3空间的一组基

Given a space: Every basis for the space has the same number of vectors (dimension of the space)

3.2 列空间和零空间的基 Basis of a column space and nullspace

讨论列空间:

矩阵A的四个列向量张成了矩阵A的列空间,其中第3列和第4列与前两列线性相关,而前两个列向量线性无关。因此前两列为主元列。他们组成了列空间C(A)的一组基。矩阵的秩为2。

rank矩阵的秩r=# of pivot columns 矩阵主元列的数目=dimension of C(A)列空间的维数

讨论零空间:

必然在零空间N(A)之内

dim N(A)零空间的维数=自由列的数目# of free variables=n-r

相关文章:

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

1. 线性无关 Independence Suppose A is m by n with m<n (more unknowns than equations) Then there are nonzero solutions to Ax0 Reason: there will be free variables! A中具有至少一个自由变量&#xff0c;那么Ax0一定具有非零解。A的列向量可以线性组合得到零向…...

Kubernetes 概述以及Kubernetes 集群架构与组件

目录 Kubernetes概述 K8S 是什么 为什么要用 K8S K8S 的特性 Kubernetes 集群架构与组件 核心组件 Master 组件 Node 组件 ​编辑 Kubernetes 核心概念 常见的K8S按照部署方式 Kubernetes概述 K8S 是什么 K8S 的全称为 Kubernetes,Kubernetes 是一个可移植、可扩…...

GZ035 5G组网与运维赛题第9套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项&#xff08;高职组&#xff09; 赛题第9套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通&#xff08;35分&#xff09; 子任务1&#xff1a;5G公共网络部署与调试&#xff08;15分&#xff09; 子…...

使用Jasypt3.0.3版本对SpringBoot配置文件加密

时间 2023-11-01 使用Jasypt3.0.3版本对SpringBoot配置文件加密 目录 引入依赖使用密钥生成密文配置yml验证是否自动解密 引入依赖 <!--yml 文件加解密--><dependency><groupId>com.github.ulisesbocchio</groupId><artifactId>jasypt-spring-b…...

生成一篇博客,详细讲解springboot的单点登录功能,有流程图,有源码demo

SpringBoot是目前非常流行的一个Java开发框架&#xff0c;它以简洁的配置和快速的开发效率著称。在实际应用中&#xff0c;单点登录是一个非常重要的功能&#xff0c;它可以让用户在多个应用系统中使用同一个账号登录&#xff0c;提高用户体验和安全性。本文将详细讲解如何在Sp…...

Hadoop、Hive安装

一、 工具 Linux系统&#xff1a;Centos&#xff0c;版本7.0及以上 JDK&#xff1a;jdk1.8 Hadoop&#xff1a;3.1.3 Hive&#xff1a;3.1.2 虚拟机&#xff1a;VMware mysql&#xff1a;5.7.11 工具下载地址: https://pan.baidu.com/s/1JYtUVf2aYl5–i7xO6LOAQ 提取码: xavd…...

PHP自定义函数--输入起始日期和解算日期返回日期差几天和 上一个周期的起始结束日期

/** 日期差几天* param beginDate:2018-01-26 endDatee:2018-01-26* return int days* */ function dateDiff($beginDate, $endDate) {$diff date_diff(date_create($beginDate), date_create($endDate))->format(%R%a);return (int)$diff; }/** 返回上一周期的起始和结束日…...

.net 7 上传文件踩坑

(Name “file”) 没加上这个传不进文件 /// <summary>/// 上传单个文件/// </summary>/// <param name"formFile"></param>/// <returns></returns>[HttpPost("UploadFiles")][FunctionAttribute(MuType.Btn, "…...

C++基础算法④——排序算法(快速、归并附完整代码)

快速排序 快速排序是对冒泡排序的一种改进。 它的基本思想是:通过一趟排序将待排记录分割成独立的两部分&#xff0c;其中一部分记录的关键字均比另一部分记录的关键字小&#xff0c;则可分别对这两部分记录继续进行快速排序&#xff0c;以达到整个序列有序。 假设我们现在对 …...

高防CDN如何在防护cc上大显神通

高级防御CDN&#xff08;Content Delivery Network&#xff09;在对抗CC&#xff08;HTTP Flood&#xff09;攻击方面扮演着关键的角色&#xff0c;具备以下重要职能和作用&#xff1a; 流量分散&#xff1a;CC攻击的目标是通过大规模的HTTP请求使服务器过载&#xff0c;从而导…...

解决CSS中height:100%失效的问题

出现BUG的场景&#xff0c;点击退出到登录页面&#xff0c;发现高度不对 上面出现了一种只是占了内容的高度&#xff0c;没有占满100%&#xff0c;为什么会出现这种情况呐&#xff1f; 让div的height"100%"&#xff0c;执行网页时&#xff0c;css先执行到&#xff0…...

小红书穿搭类种草营销怎么做?纯干货

在众多营销方式中&#xff0c;穿搭类种草营销以其独特的优势在小红书平台上崭露头角。穿搭类种草营销&#xff0c;以其独特的优势&#xff0c;成为了品牌和商家推广产品的重要方式。其优势主要体现在以下几个方面&#xff1a; 1. 高度相关性&#xff1a;小红书平台的用户主要是…...

什么是ARFF文件,以.arff结尾

关于arff,主要涉及三个输入类&#xff1a;概念、实例和属性。 1.概念简单而言就是需要被处理的东西&#xff0c; 2. 实例这个词有些陌生&#xff0c;但是可以大致认为其为样本&#xff0c; 3. 属性就是数据表中的一列。 为什么要用arff&#xff1f;&#xff08;arff介绍&#x…...

华为OD机考算法题:计算疫情扩散时间

题目部分 题目计算疫情扩散时间难度难题目说明在一个地图中(地图由 n * n 个区域组成)有部分区域被感染病菌感染区域每天都会把周围(上下左右)的4个区域感染。 请根据给定的地图计算多少天以后&#xff0c;全部区域都会被感染。 如果初始地图上所有区域全部都被感染&#xff0…...

29岁从事功能测试5年被辞,面试4个月还没到工作......

最近一个32岁的老同学因为被公司辞退&#xff0c;聊天过程中找我倾诉&#xff0c;所以写下了这篇文章。 他是15年二本毕业&#xff0c;学的园林专业&#xff0c;人属于比较懒的那种&#xff0c;不爱学习&#xff0c;专业学的也一般。实习期间通过校招找到了一份对口的工作。但…...

再记【fatal error C1001: 内部编译器错误】的一个原因

平台&#xff1a;Windows 11、Visual Studio 2022 报错信息 已启动生成... 1>------ 已启动生成: 项目: PointMatchingModel, 配置: Debug x64 ------ 1>PointMatchingModel.cpp 1>C:\tools\vcpkg\installed\x64-windows\include\pcl\registration\impl\ia_fpcs.hpp…...

数据分析、大数据分析和人工智能之间的区别

数据分析、大数据分析和人工智能近年来十分热门&#xff0c;三者之间看起来有相似之处&#xff0c;也有不同之处。今天就来谈谈三者间的区别。 数据分析 数据分析是指对数据进行分析&#xff0c;从中提取有价值的信息&#xff0c;以支持企业或组织的决策制定。数据分析可以针对…...

Spring系列之基础

目录 Spring概述 Spring的优点 Spring Framework的组成 总结 Spring概述 Spring 是目前主流的 Java Web 开发框架&#xff0c;是 Java 世界最为成功的框架。该框架是一个轻量级的开源框架&#xff0c;具有很高的凝聚力和吸引力。它以Ioc&#xff08;控制反转&#xff09;和…...

Android开发知识学习——TCP / IP 协议族

文章目录 学习资源来自&#xff1a;扔物线TCP / IP 协议族TCP连接TCP 连接的建立与关闭TCP 连接的建立为什么要三次握手&#xff1f; TCP 连接的关闭为什么要四次挥手&#xff1f; 为什么要⻓连接&#xff1f; 常见面试题课后题 学习资源来自&#xff1a;扔物线 TCP / IP 协议…...

思维训练 第四课 省略句

系列文章目录 文章目录 系列文章目录前言一、省略的十五种情况1.并列复合句中某些相同成分的省略2.在用when, while, if, as if, though, although, as ,until, whether等连词引导的状语从句中&#xff0c;如果谓语有be,而主语又跟主句的主语相同或是&#xff08;从句主语是&am…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...