当前位置: 首页 > news >正文

Yolov3,v4,v5区别

网络区别就不说了,ipad笔记记录了,这里只说其他的区别

1 输入区别

1.1 yolov3

没什么特别的数据增强方式

1.2 yolov4

Mosaic数据增强

Yolov4中使用的Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放、随机裁剪、随机排布的方式进行拼接。

这里首先要了解为什么要进行Mosaic数据增强呢?

在平时项目训练时,小目标的AP一般比中目标和大目标低很多。而Coco数据集中也包含大量的小目标,但比较麻烦的是小目标的分布并不均匀

首先看下小、中、大目标的定义:

2019年发布的论文《Augmentation for small object detection》对此进行了区分:

可以看到小目标的定义是目标框的长宽0×0~32×32之间的物体。

但在整体的数据集中,小、中、大目标的占比并不均衡。

如上表所示,Coco数据集中小目标占比达到41.4%,数量比中目标和大目标都要多。

但在所有的训练集图片中,只有52.3%的图片有小目标,而中目标和大目标的分布相对来说更加均匀一些。

针对这种状况,Yolov4的作者采用了Mosaic数据增强的方式。

主要有几个优点:

丰富数据集:随机使用4张图片,随机缩放,再随机分布进行拼接,大大丰富了检测数据集,特别是随机缩放增加了很多小目标,让网络的鲁棒性更好。

减少GPU:可能会有人说,随机缩放,普通的数据增强也可以做,但作者考虑到很多人可能只有一个GPU,因此Mosaic增强训练时,可以直接计算4张图片的数据,使得Mini-batch大小并不需要很大,一个GPU就可以达到比较好的效果。

1.3 yolov5

1)Mosaic数据增强

Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。

Mosaic数据增强提出的作者也是来自Yolov5团队的成员,不过,随机缩放随机裁剪随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。

(2) 自适应锚框计算

在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框

在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数

因此初始锚框也是比较重要的一部分,比如Yolov5在Coco数据集上初始设定的锚框:

在Yolov3、Yolov4中,训练不同的数据集时,计算初始锚框的值是通过单独的程序运行的。

但Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。

当然,如果觉得计算的锚框效果不是很好,也可以在代码中将自动计算锚框功能关闭

控制的代码即train.py中上面一行代码,设置成False,每次训练时,不会自动计算。

(3)自适应图片缩放

在常用的目标检测算法中,不同的图片长宽都不相同,因此常用的方式是将原始图片统一缩放到一个标准尺寸,再送入检测网络中。

比如Yolo算法中常用416*416,608*608等尺寸,比如对下面800*600的图像进行缩放。

Yolov5代码中对此进行了改进,也是Yolov5推理速度能够很快的一个不错的trick。

作者认为,在项目实际使用时,很多图片的长宽比不同,因此缩放填充后,两端的黑边大小都不同,而如果填充的比较多,则存在信息冗余,影响推理速度。

因此在Yolov5的代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边

图像高度上两端的黑边变少了,在推理时,计算量也会减少,即目标检测速度会得到提升。

这种方式在之前github上Yolov3中也进行了讨论:https://github.com/ultralytics/yolov3/issues/232

在讨论中,通过这种简单的改进,推理速度得到了37%的提升,可以说效果很明显。

但是有的同学可能会有大大的问号??如何进行计算的呢?大白按照Yolov5中的思路详细的讲解一下,在datasets.py的letterbox函数中也有详细的代码。

第一步:计算缩放比例

原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。

第二步:计算缩放后的尺寸

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

第三步:计算黑边填充数值

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到8个像素,再除以2,即得到图片高度两端需要填充的数值。

此外,需要注意的是:

a.这里大白填充的是黑色,即(0,0,0),而Yolov5中填充的是灰色,即(114,114,114),都是一样的效果。

b.训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。

c.为什么np.mod函数的后面用32?因为Yolov5的网络经过5次下采样,而2的5次方,等于32。所以至少要去掉32的倍数,再进行取余。

1.4 yolox

除了用Mosaic之外,还用了MixUp数据增强

MixUp是在Mosaic基础上,增加的一种额外的增强策略。

主要来源于2017年,顶会ICLR的一篇论文《mixup: Beyond Empirical Risk Minimization》。当时主要应用在图像分类任务中,可以在几乎无额外计算开销的情况下,稳定提升1个百分点的分类精度。

而在Yolox中,则也应用到目标检测中,代码在yolox/datasets/mosaicdetection.py这个文件中。

其实方式很简单,比如我们在做人脸检测的任务

先读取一张图片,图像两侧填充,缩放到640*640大小,即Image_1,人脸检测框为红色框。

再随机选取一张图片,图像上下填充,也缩放到640*640大小,即Image_2,人脸检测框为蓝色框。

然后设置一个融合系数,比如上图中,设置为0.5,将Image_1和Image_2,加权融合,最终得到右面的Image。

从右图可以看出,人脸的红色框和蓝色框是叠加存在的。

我们知道,在Mosaic和Mixup的基础上,Yolov3 baseline增加了2.4个百分点

不过有两点需要注意:

(1)在训练的最后15个epoch,这两个数据增强会被关闭掉。

而在此之前,Mosaic和Mixup数据增强,都是打开的,这个细节需要注意。

(2)由于采取了更强的数据增强方式,作者在研究中发现,ImageNet预训练将毫无意义,因此,所有的模型,均是从头开始训练的。

相关文章:

Yolov3,v4,v5区别

网络区别就不说了,ipad笔记记录了,这里只说其他的区别1 输入区别1.1 yolov3没什么特别的数据增强方式1.2 yolov4Mosaic数据增强Yolov4中使用的Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,…...

基于Appium+WinAppDriver+Python的winUI3应用的自动化框架搭建分享(一)环境配置

安装WinAppDriver下载并安装WinAppDriver:来源 https://github.com/Microsoft/WinAppDriver/releases开启电脑的开发者模式设置-隐私和安全性-开发者选项-开发人员模式安装Appium安装Appium Server Gui https://github.com/appium/appium-desktop/releases安装Appium Inspector…...

使用docker安装RocketMQ

文章目录1.创建namesrv服务拉取镜像创建namesrv数据存储路径构建namesrv容器2.创建broker节点创建broker数据存储路径创建配置文件构建broker容器3.创建rockermq-console服务拉取镜像构建rockermq-console容器需要关闭防火墙或者开放namesrv和broker端口关闭防火墙开放指定端口…...

【FPGA仿真】Matlab生成二进制、十六进制的txt数据以及Vivado读取二进制、十六进制数据并将结果以txt格式保存

Matlab 生成二进制、十六进制数据 在使用Vivado软件进行Verilog程序仿真时可能需要对模块输入仿真的数据,因此我们需要一个产生数据的方法(二进制或者十六进制的数据),Matlab软件是一个很好的工具,当然你也可以使用VS…...

【第四章 IOC操作bean管理(基于注解方式创建对象,注入属性),完全注解开发】

第四章 IOC操作bean管理(基于注解方式创建对象,注入属性),完全注解开发 1.IOC操作bean管理(基于注解方式) (1)什么是注解: ①注解是代码特殊标记,格式&#…...

【手把手一起学习】(六) Altium Designer 20 STM32核心板Demo----PCB设计

1 PCB设计 PCB设计是制作STM32核心板的关键步骤,其关系到最终生产厂家制作的电路板能否正常使用,PCB设计包括布局,裁板,布线,覆铜,DRC检查等,其中要求、细节、技巧比较多,以后会更详…...

【蓝桥杯集训·周赛】AcWing 第92场周赛

文章目录第一题 AcWing 4864. 多边形一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第二题 AcWing 4865. 有效类型一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第三题 AcWing 4866. 最大数量一、题目1、原…...

编程参考 - GCC中的Basic ASM

asm关键字允许你在C代码中嵌入汇编程序指令。GCC提供两种形式的内联asm语句。一种是基本asm语句,是没有操作数的语句(见基本asm),而另一种扩展asm语句(见扩展asm)包括一个或多个操作数。在函数内部混合使用…...

软考中级-操作系统

1 操作系统地位计算机系统由硬件和软件组成,未配置软件的称为裸机,但这会导致效率低下。操作系统是为弥补用户与硬件之间的鸿沟的一种系统软件,汇编、编译、解释、数据库管理系统等系统软件和其他应用软件都在此基础。2 进程管理又称处理机管…...

MYD-Y6ULL开发笔记

MYD-Y6ULL开发 文章目录MYD-Y6ULL开发一、系统移植1. 核板说明2. 文件系统操作二、应用开发1. 应用自启动2. 应用编译3.系统应用4.网络5.系统参数一、系统移植 1. 核板说明 型号 MYIR-Y6UL Y2 V2-256N 256D-50I烧了固件命令 uuu.exe myd-y6ulx-y2-256n256d-core-base.auto2. 文…...

三天吃透Java虚拟机面试八股文

本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~ Github地址:https://github.com/…...

Spring Cloud Alibaba全家桶(二)——微服务组件Nacos注册中心

前言 本文为微服务组件Nacos注册中心相关知识,下边将对什么是 Nacos,Nacos注册中心(包括:注册中心演变及其设计思想、核心功能),Nacos Server部署(包括:单机模式、集群模式&#xff…...

命令执行漏洞 | iwebsec

文章目录1 靶场环境2 命令执行漏洞介绍3 靶场练习01-命令执行漏洞02-命令执行漏洞空格绕过03-命令执行漏洞关键命令绕过04-命令执行漏洞通配符绕过05-命令执行漏洞base64编码绕过4 命令执行漏洞危害01-读写系统文件02-执行系统命令03-种植恶意木马04-反弹shellpython反弹shellp…...

2023.02.26 学习周报

文章目录摘要文献阅读1.题目2.摘要3.介绍4.模型4.1 SESSION-PARALLEL MINI-BATCHES4.2 SAMPLING ON THE OUTPUT4.3 RANKING LOSS5.实验5.1 数据集5.2 验证方式5.3 baselines5.4 实验结果6.结论深度学习元胞自动机1.定义2.构成3.特性4.思想5.统计特征流形学习1.降维2.空间3.距离…...

局域网实现PC、Pad、Android互联

文章目录局域网实现PC、Pad、Android互联一、网络邻居1、 Windows 配置1.1 开启共享功能1.2 设置用户1.3 共享文件夹2、 Pad 连接二、 FTP & HTTP1、 电脑配置1.1 HTTP 服务1.2 FTP 服务2、 连接3、 电脑连接 FTP三、 其他方式局域网实现PC、Pad、Android互联 在我们使用多…...

AC自动机

AC自动机 该模型应用场景是什么样的?假如有一篇很长的文章,然后有一个敏感词表单,请从这篇文章里找出包含了哪些敏感词。即便是用KMP进行快速匹配,那也只能每次遍历整篇文章才能找到一种敏感词,KMP只适用于单一子串匹配…...

git入门

目录 1. git简介 1.1 git是什么 1.2 git与svn的区别 2. github 2.1 创建仓库 2.2 删除仓库 2.3 新建文件及文件夹 3. git的基本操作 3.1 配置账户及邮箱 3.2 git文件状态与工作区域 3.3 常用命令 3.4 克隆(clone) 3.5 查看git仓库的状态 3.…...

RK3568编译Android11和目录讲解

文章目录 前言一、下载android11源码二、环境搭建1.增加交换内存三、编译瑞芯微原厂源码四、目录讲解总结前言 本文记录在Ubuntu18.04中编译Android11,只有编译了源码,后面才能进行驱动的开发,有兴趣的小伙伴可以和我一起学习吧! 提示:以下是本篇文章正文内容,下面案例可…...

java泛型学习篇(二)

java泛型学习篇(二) 1 自定义泛型类 1.1 基本语法 Class 类型 <T,R,M...>{ //成员,其中...代表<>括号里面的参数可以有多个ja }1.2 注意点 1.2.1 属性和方法都是可以使用泛型的 T t;//属性使用泛型,合法public T getT() {return t;} //方法使用泛型,合法 publi…...

Java基础

Java基础Java基础一、课前问答二、概述三、Java的历史四、Java的特点五、计算机执行机制以及Java执行机制5.1 计算机的执行机制5.2 Java的执行机制六、常用DOS命令七、第一个Java程序八、包的使用九、编码规范十、注释Java基础 一、课前问答 1、什么是程序 2、什么是语言 3、什…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...