当前位置: 首页 > news >正文

Yolov3,v4,v5区别

网络区别就不说了,ipad笔记记录了,这里只说其他的区别

1 输入区别

1.1 yolov3

没什么特别的数据增强方式

1.2 yolov4

Mosaic数据增强

Yolov4中使用的Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放、随机裁剪、随机排布的方式进行拼接。

这里首先要了解为什么要进行Mosaic数据增强呢?

在平时项目训练时,小目标的AP一般比中目标和大目标低很多。而Coco数据集中也包含大量的小目标,但比较麻烦的是小目标的分布并不均匀

首先看下小、中、大目标的定义:

2019年发布的论文《Augmentation for small object detection》对此进行了区分:

可以看到小目标的定义是目标框的长宽0×0~32×32之间的物体。

但在整体的数据集中,小、中、大目标的占比并不均衡。

如上表所示,Coco数据集中小目标占比达到41.4%,数量比中目标和大目标都要多。

但在所有的训练集图片中,只有52.3%的图片有小目标,而中目标和大目标的分布相对来说更加均匀一些。

针对这种状况,Yolov4的作者采用了Mosaic数据增强的方式。

主要有几个优点:

丰富数据集:随机使用4张图片,随机缩放,再随机分布进行拼接,大大丰富了检测数据集,特别是随机缩放增加了很多小目标,让网络的鲁棒性更好。

减少GPU:可能会有人说,随机缩放,普通的数据增强也可以做,但作者考虑到很多人可能只有一个GPU,因此Mosaic增强训练时,可以直接计算4张图片的数据,使得Mini-batch大小并不需要很大,一个GPU就可以达到比较好的效果。

1.3 yolov5

1)Mosaic数据增强

Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。

Mosaic数据增强提出的作者也是来自Yolov5团队的成员,不过,随机缩放随机裁剪随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。

(2) 自适应锚框计算

在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框

在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数

因此初始锚框也是比较重要的一部分,比如Yolov5在Coco数据集上初始设定的锚框:

在Yolov3、Yolov4中,训练不同的数据集时,计算初始锚框的值是通过单独的程序运行的。

但Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。

当然,如果觉得计算的锚框效果不是很好,也可以在代码中将自动计算锚框功能关闭

控制的代码即train.py中上面一行代码,设置成False,每次训练时,不会自动计算。

(3)自适应图片缩放

在常用的目标检测算法中,不同的图片长宽都不相同,因此常用的方式是将原始图片统一缩放到一个标准尺寸,再送入检测网络中。

比如Yolo算法中常用416*416,608*608等尺寸,比如对下面800*600的图像进行缩放。

Yolov5代码中对此进行了改进,也是Yolov5推理速度能够很快的一个不错的trick。

作者认为,在项目实际使用时,很多图片的长宽比不同,因此缩放填充后,两端的黑边大小都不同,而如果填充的比较多,则存在信息冗余,影响推理速度。

因此在Yolov5的代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边

图像高度上两端的黑边变少了,在推理时,计算量也会减少,即目标检测速度会得到提升。

这种方式在之前github上Yolov3中也进行了讨论:https://github.com/ultralytics/yolov3/issues/232

在讨论中,通过这种简单的改进,推理速度得到了37%的提升,可以说效果很明显。

但是有的同学可能会有大大的问号??如何进行计算的呢?大白按照Yolov5中的思路详细的讲解一下,在datasets.py的letterbox函数中也有详细的代码。

第一步:计算缩放比例

原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。

第二步:计算缩放后的尺寸

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

第三步:计算黑边填充数值

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到8个像素,再除以2,即得到图片高度两端需要填充的数值。

此外,需要注意的是:

a.这里大白填充的是黑色,即(0,0,0),而Yolov5中填充的是灰色,即(114,114,114),都是一样的效果。

b.训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。

c.为什么np.mod函数的后面用32?因为Yolov5的网络经过5次下采样,而2的5次方,等于32。所以至少要去掉32的倍数,再进行取余。

1.4 yolox

除了用Mosaic之外,还用了MixUp数据增强

MixUp是在Mosaic基础上,增加的一种额外的增强策略。

主要来源于2017年,顶会ICLR的一篇论文《mixup: Beyond Empirical Risk Minimization》。当时主要应用在图像分类任务中,可以在几乎无额外计算开销的情况下,稳定提升1个百分点的分类精度。

而在Yolox中,则也应用到目标检测中,代码在yolox/datasets/mosaicdetection.py这个文件中。

其实方式很简单,比如我们在做人脸检测的任务

先读取一张图片,图像两侧填充,缩放到640*640大小,即Image_1,人脸检测框为红色框。

再随机选取一张图片,图像上下填充,也缩放到640*640大小,即Image_2,人脸检测框为蓝色框。

然后设置一个融合系数,比如上图中,设置为0.5,将Image_1和Image_2,加权融合,最终得到右面的Image。

从右图可以看出,人脸的红色框和蓝色框是叠加存在的。

我们知道,在Mosaic和Mixup的基础上,Yolov3 baseline增加了2.4个百分点

不过有两点需要注意:

(1)在训练的最后15个epoch,这两个数据增强会被关闭掉。

而在此之前,Mosaic和Mixup数据增强,都是打开的,这个细节需要注意。

(2)由于采取了更强的数据增强方式,作者在研究中发现,ImageNet预训练将毫无意义,因此,所有的模型,均是从头开始训练的。

相关文章:

Yolov3,v4,v5区别

网络区别就不说了,ipad笔记记录了,这里只说其他的区别1 输入区别1.1 yolov3没什么特别的数据增强方式1.2 yolov4Mosaic数据增强Yolov4中使用的Mosaic是参考2019年底提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,…...

基于Appium+WinAppDriver+Python的winUI3应用的自动化框架搭建分享(一)环境配置

安装WinAppDriver下载并安装WinAppDriver:来源 https://github.com/Microsoft/WinAppDriver/releases开启电脑的开发者模式设置-隐私和安全性-开发者选项-开发人员模式安装Appium安装Appium Server Gui https://github.com/appium/appium-desktop/releases安装Appium Inspector…...

使用docker安装RocketMQ

文章目录1.创建namesrv服务拉取镜像创建namesrv数据存储路径构建namesrv容器2.创建broker节点创建broker数据存储路径创建配置文件构建broker容器3.创建rockermq-console服务拉取镜像构建rockermq-console容器需要关闭防火墙或者开放namesrv和broker端口关闭防火墙开放指定端口…...

【FPGA仿真】Matlab生成二进制、十六进制的txt数据以及Vivado读取二进制、十六进制数据并将结果以txt格式保存

Matlab 生成二进制、十六进制数据 在使用Vivado软件进行Verilog程序仿真时可能需要对模块输入仿真的数据,因此我们需要一个产生数据的方法(二进制或者十六进制的数据),Matlab软件是一个很好的工具,当然你也可以使用VS…...

【第四章 IOC操作bean管理(基于注解方式创建对象,注入属性),完全注解开发】

第四章 IOC操作bean管理(基于注解方式创建对象,注入属性),完全注解开发 1.IOC操作bean管理(基于注解方式) (1)什么是注解: ①注解是代码特殊标记,格式&#…...

【手把手一起学习】(六) Altium Designer 20 STM32核心板Demo----PCB设计

1 PCB设计 PCB设计是制作STM32核心板的关键步骤,其关系到最终生产厂家制作的电路板能否正常使用,PCB设计包括布局,裁板,布线,覆铜,DRC检查等,其中要求、细节、技巧比较多,以后会更详…...

【蓝桥杯集训·周赛】AcWing 第92场周赛

文章目录第一题 AcWing 4864. 多边形一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第二题 AcWing 4865. 有效类型一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第三题 AcWing 4866. 最大数量一、题目1、原…...

编程参考 - GCC中的Basic ASM

asm关键字允许你在C代码中嵌入汇编程序指令。GCC提供两种形式的内联asm语句。一种是基本asm语句,是没有操作数的语句(见基本asm),而另一种扩展asm语句(见扩展asm)包括一个或多个操作数。在函数内部混合使用…...

软考中级-操作系统

1 操作系统地位计算机系统由硬件和软件组成,未配置软件的称为裸机,但这会导致效率低下。操作系统是为弥补用户与硬件之间的鸿沟的一种系统软件,汇编、编译、解释、数据库管理系统等系统软件和其他应用软件都在此基础。2 进程管理又称处理机管…...

MYD-Y6ULL开发笔记

MYD-Y6ULL开发 文章目录MYD-Y6ULL开发一、系统移植1. 核板说明2. 文件系统操作二、应用开发1. 应用自启动2. 应用编译3.系统应用4.网络5.系统参数一、系统移植 1. 核板说明 型号 MYIR-Y6UL Y2 V2-256N 256D-50I烧了固件命令 uuu.exe myd-y6ulx-y2-256n256d-core-base.auto2. 文…...

三天吃透Java虚拟机面试八股文

本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~ Github地址:https://github.com/…...

Spring Cloud Alibaba全家桶(二)——微服务组件Nacos注册中心

前言 本文为微服务组件Nacos注册中心相关知识,下边将对什么是 Nacos,Nacos注册中心(包括:注册中心演变及其设计思想、核心功能),Nacos Server部署(包括:单机模式、集群模式&#xff…...

命令执行漏洞 | iwebsec

文章目录1 靶场环境2 命令执行漏洞介绍3 靶场练习01-命令执行漏洞02-命令执行漏洞空格绕过03-命令执行漏洞关键命令绕过04-命令执行漏洞通配符绕过05-命令执行漏洞base64编码绕过4 命令执行漏洞危害01-读写系统文件02-执行系统命令03-种植恶意木马04-反弹shellpython反弹shellp…...

2023.02.26 学习周报

文章目录摘要文献阅读1.题目2.摘要3.介绍4.模型4.1 SESSION-PARALLEL MINI-BATCHES4.2 SAMPLING ON THE OUTPUT4.3 RANKING LOSS5.实验5.1 数据集5.2 验证方式5.3 baselines5.4 实验结果6.结论深度学习元胞自动机1.定义2.构成3.特性4.思想5.统计特征流形学习1.降维2.空间3.距离…...

局域网实现PC、Pad、Android互联

文章目录局域网实现PC、Pad、Android互联一、网络邻居1、 Windows 配置1.1 开启共享功能1.2 设置用户1.3 共享文件夹2、 Pad 连接二、 FTP & HTTP1、 电脑配置1.1 HTTP 服务1.2 FTP 服务2、 连接3、 电脑连接 FTP三、 其他方式局域网实现PC、Pad、Android互联 在我们使用多…...

AC自动机

AC自动机 该模型应用场景是什么样的?假如有一篇很长的文章,然后有一个敏感词表单,请从这篇文章里找出包含了哪些敏感词。即便是用KMP进行快速匹配,那也只能每次遍历整篇文章才能找到一种敏感词,KMP只适用于单一子串匹配…...

git入门

目录 1. git简介 1.1 git是什么 1.2 git与svn的区别 2. github 2.1 创建仓库 2.2 删除仓库 2.3 新建文件及文件夹 3. git的基本操作 3.1 配置账户及邮箱 3.2 git文件状态与工作区域 3.3 常用命令 3.4 克隆(clone) 3.5 查看git仓库的状态 3.…...

RK3568编译Android11和目录讲解

文章目录 前言一、下载android11源码二、环境搭建1.增加交换内存三、编译瑞芯微原厂源码四、目录讲解总结前言 本文记录在Ubuntu18.04中编译Android11,只有编译了源码,后面才能进行驱动的开发,有兴趣的小伙伴可以和我一起学习吧! 提示:以下是本篇文章正文内容,下面案例可…...

java泛型学习篇(二)

java泛型学习篇(二) 1 自定义泛型类 1.1 基本语法 Class 类型 <T,R,M...>{ //成员,其中...代表<>括号里面的参数可以有多个ja }1.2 注意点 1.2.1 属性和方法都是可以使用泛型的 T t;//属性使用泛型,合法public T getT() {return t;} //方法使用泛型,合法 publi…...

Java基础

Java基础Java基础一、课前问答二、概述三、Java的历史四、Java的特点五、计算机执行机制以及Java执行机制5.1 计算机的执行机制5.2 Java的执行机制六、常用DOS命令七、第一个Java程序八、包的使用九、编码规范十、注释Java基础 一、课前问答 1、什么是程序 2、什么是语言 3、什…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...