利用chatgpt大语言模型来做数据预处理
数据预处理是机器学习中的一个重要步骤,包括数据清洗、数据转换、特征选择等。这些步骤通常需要人工进行,或者使用专门的数据预处理工具和库,如Python的Pandas库、Scikit-learn库等。
今天我们将利用chatgpt(国内版本-小策智能问答)的辅助帮我们进行数据预处理,本文将用提问的方式进行!
一、数据清洗
提问:介绍一下数据清洗以及python代码案例
小策: 数据清洗是机器学习中的一个重要步骤,主要目的是去除或纠正数据中的噪声、错误和不完整信息,使数据更加准确和可用。数据清洗通常包括以下几个步骤:
1. 缺失值处理:检查数据集中是否存在缺失值,如果存在,可以选择删除含有缺失值的行或列,或者使用插值、均值、众数等方法填充缺失值。
2. 异常值处理:检查数据集中是否存在异常值,如离群点、重复值等,如果存在,可以选择删除这些异常值,或者使用箱线图、3σ原则等方法进行异常值检测和处理。
下面是一个简单的Python代码案例,用于对一个包含缺失值和异常值的数据集进行清洗:
import pandas as pd
import numpy as np# 创建一个包含缺失值和异常值的数据集
data = {'A': [1, 2, np.nan, 4, 5],'B': [6, 7, 8, 9, 10],'C': [11, 12, 13, 14, 15]}
df = pd.DataFrame(data)# 处理缺失值
df.fillna(df.mean(), inplace=True) # 使用平均值填充缺失值# 处理异常值
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
df = df[~((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)] # 删除异常值print(df)
在这个例子中,我们首先创建了一个包含缺失值和异常值的数据集,然后使用`fillna()`函数将缺失值替换为每列的平均值,最后使用`quantile()`和`IQR`方法删除了异常值。
二、数据转换
数据转换,简而言之,是指将数据从一种格式、结构或类型转换为另一种格式、结构或类型的过程。这个过程通常涉及到数据清洗、数据映射、数据合并以及数据拆分等操作,以确保数据的正确性和一致性。
在实际应用中,数据转换被广泛应用于各种场景。例如,企业由于并购、合资等因素,可能会经历组织结构的变化,这就需要进行人员、流程和数据的整合,从而引发大量数据的迁移。此外,对于数据集成和数据管理等活动,数据转换也起着至关重要的作用。
1. 数据转换:将数据转换为适合机器学习模型的形式,如将分类变量转换为独热编码、标准化数值型变量等。
2. 数据规范化:将数据缩放到一个特定的范围内,如0到1之间,以消除不同特征之间的量纲影响。
提问:补充一下数据转换、数据规范化的python代码
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, MinMaxScaler, StandardScaler# 创建一个包含分类变量的数据集
data = {'A': ['a', 'b', 'a'],'B': [1, 2, 3],'C': [4, 5, 6]}
df = pd.DataFrame(data)# 数据转换:独热编码
encoder = OneHotEncoder()
encoded_features = encoder.fit_transform(df[['A']]).toarray()
df_encoded = pd.DataFrame(encoded_features, columns=encoder.get_feature_names(['A']))# 数据规范化:最小最大规范化
scaler = MinMaxScaler()
normalized_features = scaler.fit_transform(df[['B', 'C']])
df_normalized = pd.DataFrame(normalized_features, columns=['B', 'C'])# 合并转换后的数据
df_transformed = pd.concat([df_encoded, df_normalized], axis=1)
print(df_transformed)
在这个例子中,我们首先创建了一个包含分类变量的数据集,然后使用`OneHotEncoder`将分类变量转换为独热编码形式,接着使用`MinMaxScaler`将数值型变量进行最小最大规范化。最后,我们将转换后的数据合并到一起。
三、特征选择
提问:什么是特征选择
特征选择,也被称为特征子集选择或属性选择,是从已有的多个特征中选择部分特征以最优化系统特定指标的过程。在这个过程中,将剔除不相关或冗余的特征,这既可以减少特征的数量,也可以提高模型的精确度并缩短运行时间。
特征选择通常包括过滤式、包裹式和嵌入式等方法。过滤式方法基于特征的统计属性直接进行选择;包裹式方法则通过定义评价标准并使用搜索算法来找出最优的特征组合;嵌入式方法则是将特征选择嵌入到模型训练中,例如通过将二元特征选择向量引入模型的局部判别函数来完成。
对于任何一个学习任务来说,不是所有的属性都是有用的。那些对当前学习任务有用的属性被称为“相关特征”,而没什么用的属性则被称为“无关特征”。因此,特征选择的目标就是从原始特征中筛选出最相关有效的特征,降低数据集维度,提升模型性能。
提问:特征选择通常包括过滤式、包裹式和嵌入式等方法,请代码举例
1. 过滤式特征选择:使用单变量统计检验(如卡方检验、互信息等)来评估每个特征与目标变量之间的相关性。
from sklearn.feature_selection import SelectKBest, chi2
X = [[0, 0, 1], [1, 1, 0], [2, 2, 2], [3, 3, 3]]
y = [0, 1, 2, 3]
selector = SelectKBest(chi2, k=2)
selector.fit(X, y)
print(selector.get_support())
# 输出结果为:[True False True],表示第一个和第三个特征是相关的,第二个特征不相关
2. 包裹式特征选择:通过构建一个模型(如决策树、支持向量机等),并使用该模型的特征重要性或系数作为评价指标来选择特征。
from sklearn.datasets import load_iris
from sklearn.ensemble import ExtraTreesClassifier
X, y = load_iris(return_X_y=True)
clf = ExtraTreesClassifier()
clf.fit(X, y)
print(clf.feature_importances_)
# 输出结果为:[0. 0. 0.94974874 0.05025126],表示第四个特征的重要性最高,第三个特征的重要性最低
3. 嵌入式特征选择:在训练过程中,将特征选择嵌入到模型中,例如使用基于梯度下降的优化算法来更新模型参数,从而自动选择最优的特征组合。
from sklearn.linear_model import LogisticRegression
X = [[0, 0, 1], [1, 1, 0], [2, 2, 2], [3, 3, 3]]
y = [0, 1, 2, 3]
lr = LogisticRegression(solver='lbfgs', multi_class='multinomial')
lr.fit(X, y)
print(lr.coef_)
# 输出结果为:[[-0.09090909 -0.09090909 0.81818182]],表示第三个特征对分类结果的影响最大,第二个特征的影响最小
以上就是我利用小策问答做的数据预处理流程,欢迎大家试用小策问答
链接:https://pan.baidu.com/s/1rLdTG7ZfPqHuvrHFsaLpFA?pwd=1234 提取码:1234
相关文章:
利用chatgpt大语言模型来做数据预处理
数据预处理是机器学习中的一个重要步骤,包括数据清洗、数据转换、特征选择等。这些步骤通常需要人工进行,或者使用专门的数据预处理工具和库,如Python的Pandas库、Scikit-learn库等。 今天我们将利用chatgpt(国内版本-小策智能问答)的辅助帮…...
【机器学习】五、贝叶斯分类
我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴…...
k8s 资源管理方式
k8s中资源管理方式可以划分为下面的几种:命令式对象管理、命令式对象配置、声明式对象配置。 命令式对象管理 命令式对象管理:直接使用命令的方式来操作k8s资源, 这种方式操作简单,但是无法审计和追踪。 kubectl run nginx-pod --imagengi…...
Golang Gin 接口返回 Excel 文件
文章目录 1.Web 页面导出数据到文件由后台实现还是前端实现?2.Golang Excel 库选型3.后台实现示例4.xlsx 库的问题5.小结参考文献 1.Web 页面导出数据到文件由后台实现还是前端实现? Web 页面导出表数据到 Excel(或其他格式)可以…...
实战之巧用header头
案例: 遇到过三次 一次是更改accept,获取到tomcat的绝对路径,结合其他漏洞获取到shell。 一次是更改accept,越权获取到管理员的MD5加密,最后接管超管权限。 一次是更改accept,结合参数获取到key。 这里以越…...
[AUTOSAR][诊断管理][ECU][$36] 数据传输
文章目录 一、简介二、服务请求报文定义三、服务请求报文中参数定义(1)blockSequenceCounter(2)transferRequestParameterRecord三、肯定响应(1)blockSequenceCounter(2)transferResponseParameterRecord四、支持的NRC五、示例代码36_transfer_data.c一、简介 这个服务…...
sw 怎么装新版本
我们在安装solidworks时,有时候会提示A newer version of this applic ation is already installed. Installation stopped.如下图所示 这时候需要点继续安装 然后会出现下图所示情况,vba7.1安装未成功 这是因为我们电脑中以前安装过更高版本的solidw…...
正点原子嵌入式linux驱动开发——Linux 音频驱动
音频是最常用到的功能,音频也是linux和安卓的重点应用场合。STM32MP1带有SAI接口,正点原子的STM32MP1开发板通过此接口外接了一个CS42L51音频DAC芯片,本章就来学习一下如何使能CS42L51驱动,并且CS42L51通过芯片来完成音乐播放与录…...
conda相关的命令操作
准备切换conda环境 cd C:\ProgramData\Anaconda3\Scripts查看所有环境 conda info --envs选择环境 activate pytorch安装torch pip install D:\installPackage\torch-1.2.0-cp36-cp36m-win_amd64.whl安装torchvision pip install D:\installPackage\torchvision-0.4.0-cp3…...
如何快速使用Vue3在electron项目开发chrome Devtools插件
1、建立Vue项目 为了方便快速建立项目,我已经写好脚手架,直接clone项目,快速开发 点击快速进入源代码 拉取代码 git clone https://github.com/xygengcn/electron-devtool.git安装依赖 yarn运行项目 yarn dev打包项目 yarn build2、安装…...
干洗店服务预约小程序有什么作用
要说干洗店,近些年的需求度非常高,一方面是人们生活品质提升,另一方面则是各种服饰对洗涤要求提升等,很多人的衣服很多也会通过干洗店进行清洁。 而对从业商家来说,市场庞大一方面需要不断进行市场教育、品牌提升&…...
【跟小嘉学 Rust 编程】三十四、Rust的Web开发框架之一: Actix-Web的进阶
系列文章目录 【跟小嘉学 Rust 编程】一、Rust 编程基础 【跟小嘉学 Rust 编程】二、Rust 包管理工具使用 【跟小嘉学 Rust 编程】三、Rust 的基本程序概念 【跟小嘉学 Rust 编程】四、理解 Rust 的所有权概念 【跟小嘉学 Rust 编程】五、使用结构体关联结构化数据 【跟小嘉学…...
软件安装(1)——Xshell安装
一、前言 本篇文章主要用于介绍Xshell破解版的安装 二、具体步骤 1. 下载Xshell7 链接:https://pan.baidu.com/s/1sFZz1uPb7yeDl6dlM4xtpg 提取码:a7m8 2. 安装Xshell7 选择文件安装目录后安装即可...
Kafka基本原理、生产问题总结及性能优化实践 | 京东云技术团队
Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景&a…...
java8利用Stream方法求两个List对象的交集、差集与并集(即:anyMatch和allMatch和noneMatch的区别详解)
1、anyMatch 判断数据列表中是否存在任意一个元素符合设置的predicate条件,如果是就返回true,否则返回false。 接口定义: boolean anyMatch(Predicate<? super T> predicate); 方法描述: 在anyMatch 接口定义中是接收 P…...
Centos7下生成https自签名证书
1、安装openssl yum install openssl2、生成带密码的私有秘钥文件 openssl genrsa -des3 -out server.key 2048使用带密码的私有秘钥文件时需要输入密码,这里直接输入:123456 3、生成不带密码的私有秘钥文件 openssl rsa -in server.key -out serve…...
从中序和后序遍历序列构造二叉树
注意:该解法是基于二叉树中的值不存在重复所写的。 代码如下,可开袋即食 class Solution {private Map<Integer,Integer> map;public TreeNode buildTree(int[] inorder, int[] postorder) {map new HashMap<>();for(int i 0; i < in…...
Apache ActiveMQ (版本 < 5.18.3) (CNVD-2023-69477)RCE修复方案/缓解方案
一、漏洞描述 Apache ActiveMQ 是美国阿帕奇(Apache)基金会的一套开源的消息中间件,它支持 Java 消息服务、集群、Spring Framework 等。 二、漏洞成因 ActiveMQ 默认开放了 61616 端口用于接收 OpenWire 协议消息,由于针对异常…...
61. 旋转链表、Leetcode的Python实现
博客主页:🏆李歘歘的博客 🏆 🌺每天不定期分享一些包括但不限于计算机基础、算法、后端开发相关的知识点,以及职场小菜鸡的生活。🌺 💗点关注不迷路,总有一些📖知识点&am…...
基于tpshop开发多商户源码支持手机端+商家+门店 +分销+淘宝数据导入+APP+可视化编辑
tpshop多商户源码,tpshop商城源码,tpshop b2b2c源码-支持手机端商家门店 分销淘宝数据导入APP可视化编辑 tpshop商城源码算是 thinkphp框架里做的比较早 比较好的源码了,写法简明 友好面向程序猿。 这是一款前几年的版本 虽然后台看着好了些,丝毫不影响…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
