diffusers-Tasks
https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation
无条件图像生成是一个相对简单的任务。模型仅生成图像,没有任何额外的上下文,如文本或图像,这些生成的图像类似于它所训练的训练数据。
from diffusers import DiffusionPipelinegenerator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128", use_safetensors=True)generator.to("cuda")
image = generator().images[0]
2.Conditional image generation
条件图像生成允许从文本提示生成图像。文本被转换为嵌入向量,这些向量被用来条件模型从噪声中生成图像。
from diffusers import DiffusionPipelinegenerator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)generator.to("cuda")
image = generator("An image of a squirrel in Picasso style").images[0]
3.Text-guided image-to-image generation
StableDiffusionImg2ImgPipeline可以输入文本提示和一个初始图像来条件生成新的图像。
import torch
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipelinedevice = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16, use_safetensors=True
).to(device)url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image.thumbnail((768, 768))prompt = "ghibli style, a fantasy landscape with castles"
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]from diffusers import LMSDiscreteSchedulerlms = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.scheduler = lms
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]
strength是一个介于0-1之间的值,控制添加到输入图像上的噪声量,接近1会在语义上输出和输入不一致的图像。
4.Text-guided image-inpainting
StableDiffusionInpaintPipeline可以提供mask和文本提示来编辑图像的特定部分。
import PIL
import requests
import torch
from io import BytesIOfrom diffusers import StableDiffusionInpaintPipelinepipeline = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",torch_dtype=torch.float16,use_safetensors=True,variant="fp16",
)
pipeline = pipeline.to("cuda")def download_image(url):response = requests.get(url)return PIL.Image.open(BytesIO(response.content)).convert("RGB")img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
5.Text-guided depth-to-image generation
相关文章:

diffusers-Tasks
https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation 无条件图像生成是一个相对简单的任务。模型仅生成图像&…...
文件下载漏洞, 漏洞原理, 测试方法, 漏洞防御, 常见敏感路径
文件下载漏洞 一, 文件下载漏洞原理 利用条件: 1. 读取文件的路径是用户可控, 且没有校验或检验不严. 2. 使用了读取文件的函数. 3. 输出了文件内容.漏洞场景一: 后端没有限制哪些路径的文件可以下载 后端代码: http://192.168.112.200/security/download.php $file_pat…...

【零参考GAN:Pansharpening】
ZeRGAN: Zero-Reference GAN for Fusion of Multispectral and Panchromatic Images (用于多光谱和全色图像融合的零参考GAN) 本文提出了一种融合低空间分辨率多光谱(LR MS)和高空间分辨率全色(PAN)图像的新的全色锐化方法–零参考生成对抗网络(ZeRGAN…...

Nacos 注册中心介绍与实操
前言 本文为个人SpringCloud学习笔记,主要记录Nacos的注册中心实操、SpringBoot多模块编程实操等 注册中心 注册中心介绍 注册中心是微服务的一个重要组件,用于实现服务的注册与发现,主要作用包括以下: 服务注册:…...

基于51单片机的智能手机充电器设计
**单片机设计介绍,1660【毕设课设】基于51单片机和MAX1898的智能手机充电器设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 51单片机智能手机充电器设计介绍 51单片机智能手机充电器是一种可以实现智能快速充电的…...
nginx 和gateway配置实现动静分离和反向代理
这两个配置文件分别是Nginx和Spring Cloud Gateway的配置文件,它们用于构建网关服务,进行请求的路由和转发。 前端发送请求的时候为了不暴露服务器地址,所以会使用nginx做反向代理的一个主要作用是隐藏后端服务器的真实地址,从而增加网络安全…...

【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop
文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正:动量法Momen…...

系统韧性研究(3)| 工程系统韧性要求
从最基本的层面上说,系统韧性指的是系统在逆境中继续执行其任务的程度。虽然对操作连续性至关重要,但系统的服务(能力)只是系统继续执行其任务所必须保护的一些资产。该系统必须检测不利因素,对其作出反应,…...

.net 5 发布后swagger页面不显示问题
1:项目右键属性-》生成xml--用于swagger文件读取 2:开启文件配饰swagger读取指定文件...

Spring Boot 3 整合 xxl-job 实现分布式定时任务调度,结合 Docker 容器化部署(图文指南)
目录 前言初始化数据库Docker 部署 xxl-job下载镜像创建容器并运行访问调度中心 SpringBoot 整合 xxl-jobpom.xmlapplication.ymlXxlJobConfig.java执行器注册查看 定时任务测试添加测试任务配置定时任务测试结果 结语附录xxl-job 官方文档xxl-job 源码测试项目源码 前言 xxl-…...

1985-2020年我国30m土地利用覆盖数据介绍
土地覆盖(LC)决定了地球各圈层之间的能量交换、水和碳循环。准确的 LC 信息是环境和气候研究的基本参数。考虑到在过去几十年中,随着经济建设的发展,中国发生了巨大的变化,连续和精细的 LC 监测是迫切需要的。然而,目前࿰…...

Django 社区志愿者管理系统
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 社区志愿者服务管理系统,主要的模块包括查看首页、个人中心、通知公告管理、志愿者管理、普通管理员管理、志愿活动管理、活动宣…...
wordpress如何修改数据库里用户ID下一个自增值的开始数字
有时候我们为了让别人认为网站有很多注册用户,会想把网站用户ID的起始数改大一点,因为WP默认的用户ID是从1开始,注册一个就加1,这样别人就很容易知道网站的用户量。 那么如何改呢?首先进phpmyadmin,找到wp…...
利用chatgpt大语言模型来做数据预处理
数据预处理是机器学习中的一个重要步骤,包括数据清洗、数据转换、特征选择等。这些步骤通常需要人工进行,或者使用专门的数据预处理工具和库,如Python的Pandas库、Scikit-learn库等。 今天我们将利用chatgpt(国内版本-小策智能问答)的辅助帮…...

【机器学习】五、贝叶斯分类
我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴…...
k8s 资源管理方式
k8s中资源管理方式可以划分为下面的几种:命令式对象管理、命令式对象配置、声明式对象配置。 命令式对象管理 命令式对象管理:直接使用命令的方式来操作k8s资源, 这种方式操作简单,但是无法审计和追踪。 kubectl run nginx-pod --imagengi…...

Golang Gin 接口返回 Excel 文件
文章目录 1.Web 页面导出数据到文件由后台实现还是前端实现?2.Golang Excel 库选型3.后台实现示例4.xlsx 库的问题5.小结参考文献 1.Web 页面导出数据到文件由后台实现还是前端实现? Web 页面导出表数据到 Excel(或其他格式)可以…...

实战之巧用header头
案例: 遇到过三次 一次是更改accept,获取到tomcat的绝对路径,结合其他漏洞获取到shell。 一次是更改accept,越权获取到管理员的MD5加密,最后接管超管权限。 一次是更改accept,结合参数获取到key。 这里以越…...
[AUTOSAR][诊断管理][ECU][$36] 数据传输
文章目录 一、简介二、服务请求报文定义三、服务请求报文中参数定义(1)blockSequenceCounter(2)transferRequestParameterRecord三、肯定响应(1)blockSequenceCounter(2)transferResponseParameterRecord四、支持的NRC五、示例代码36_transfer_data.c一、简介 这个服务…...

sw 怎么装新版本
我们在安装solidworks时,有时候会提示A newer version of this applic ation is already installed. Installation stopped.如下图所示 这时候需要点继续安装 然后会出现下图所示情况,vba7.1安装未成功 这是因为我们电脑中以前安装过更高版本的solidw…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...