diffusers-Tasks
https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation
无条件图像生成是一个相对简单的任务。模型仅生成图像,没有任何额外的上下文,如文本或图像,这些生成的图像类似于它所训练的训练数据。
from diffusers import DiffusionPipelinegenerator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128", use_safetensors=True)generator.to("cuda")
image = generator().images[0]
2.Conditional image generation
条件图像生成允许从文本提示生成图像。文本被转换为嵌入向量,这些向量被用来条件模型从噪声中生成图像。
from diffusers import DiffusionPipelinegenerator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)generator.to("cuda")
image = generator("An image of a squirrel in Picasso style").images[0]
3.Text-guided image-to-image generation
StableDiffusionImg2ImgPipeline可以输入文本提示和一个初始图像来条件生成新的图像。
import torch
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipelinedevice = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16, use_safetensors=True
).to(device)url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image.thumbnail((768, 768))prompt = "ghibli style, a fantasy landscape with castles"
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]from diffusers import LMSDiscreteSchedulerlms = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.scheduler = lms
generator = torch.Generator(device=device).manual_seed(1024)
image = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5, generator=generator).images[0]
strength是一个介于0-1之间的值,控制添加到输入图像上的噪声量,接近1会在语义上输出和输入不一致的图像。
4.Text-guided image-inpainting
StableDiffusionInpaintPipeline可以提供mask和文本提示来编辑图像的特定部分。
import PIL
import requests
import torch
from io import BytesIOfrom diffusers import StableDiffusionInpaintPipelinepipeline = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting",torch_dtype=torch.float16,use_safetensors=True,variant="fp16",
)
pipeline = pipeline.to("cuda")def download_image(url):response = requests.get(url)return PIL.Image.open(BytesIO(response.content)).convert("RGB")img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
5.Text-guided depth-to-image generation
相关文章:

diffusers-Tasks
https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation 无条件图像生成是一个相对简单的任务。模型仅生成图像&…...
文件下载漏洞, 漏洞原理, 测试方法, 漏洞防御, 常见敏感路径
文件下载漏洞 一, 文件下载漏洞原理 利用条件: 1. 读取文件的路径是用户可控, 且没有校验或检验不严. 2. 使用了读取文件的函数. 3. 输出了文件内容.漏洞场景一: 后端没有限制哪些路径的文件可以下载 后端代码: http://192.168.112.200/security/download.php $file_pat…...

【零参考GAN:Pansharpening】
ZeRGAN: Zero-Reference GAN for Fusion of Multispectral and Panchromatic Images (用于多光谱和全色图像融合的零参考GAN) 本文提出了一种融合低空间分辨率多光谱(LR MS)和高空间分辨率全色(PAN)图像的新的全色锐化方法–零参考生成对抗网络(ZeRGAN…...

Nacos 注册中心介绍与实操
前言 本文为个人SpringCloud学习笔记,主要记录Nacos的注册中心实操、SpringBoot多模块编程实操等 注册中心 注册中心介绍 注册中心是微服务的一个重要组件,用于实现服务的注册与发现,主要作用包括以下: 服务注册:…...

基于51单片机的智能手机充电器设计
**单片机设计介绍,1660【毕设课设】基于51单片机和MAX1898的智能手机充电器设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 51单片机智能手机充电器设计介绍 51单片机智能手机充电器是一种可以实现智能快速充电的…...
nginx 和gateway配置实现动静分离和反向代理
这两个配置文件分别是Nginx和Spring Cloud Gateway的配置文件,它们用于构建网关服务,进行请求的路由和转发。 前端发送请求的时候为了不暴露服务器地址,所以会使用nginx做反向代理的一个主要作用是隐藏后端服务器的真实地址,从而增加网络安全…...

【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop
文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正:动量法Momen…...

系统韧性研究(3)| 工程系统韧性要求
从最基本的层面上说,系统韧性指的是系统在逆境中继续执行其任务的程度。虽然对操作连续性至关重要,但系统的服务(能力)只是系统继续执行其任务所必须保护的一些资产。该系统必须检测不利因素,对其作出反应,…...

.net 5 发布后swagger页面不显示问题
1:项目右键属性-》生成xml--用于swagger文件读取 2:开启文件配饰swagger读取指定文件...

Spring Boot 3 整合 xxl-job 实现分布式定时任务调度,结合 Docker 容器化部署(图文指南)
目录 前言初始化数据库Docker 部署 xxl-job下载镜像创建容器并运行访问调度中心 SpringBoot 整合 xxl-jobpom.xmlapplication.ymlXxlJobConfig.java执行器注册查看 定时任务测试添加测试任务配置定时任务测试结果 结语附录xxl-job 官方文档xxl-job 源码测试项目源码 前言 xxl-…...

1985-2020年我国30m土地利用覆盖数据介绍
土地覆盖(LC)决定了地球各圈层之间的能量交换、水和碳循环。准确的 LC 信息是环境和气候研究的基本参数。考虑到在过去几十年中,随着经济建设的发展,中国发生了巨大的变化,连续和精细的 LC 监测是迫切需要的。然而,目前࿰…...

Django 社区志愿者管理系统
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 社区志愿者服务管理系统,主要的模块包括查看首页、个人中心、通知公告管理、志愿者管理、普通管理员管理、志愿活动管理、活动宣…...
wordpress如何修改数据库里用户ID下一个自增值的开始数字
有时候我们为了让别人认为网站有很多注册用户,会想把网站用户ID的起始数改大一点,因为WP默认的用户ID是从1开始,注册一个就加1,这样别人就很容易知道网站的用户量。 那么如何改呢?首先进phpmyadmin,找到wp…...
利用chatgpt大语言模型来做数据预处理
数据预处理是机器学习中的一个重要步骤,包括数据清洗、数据转换、特征选择等。这些步骤通常需要人工进行,或者使用专门的数据预处理工具和库,如Python的Pandas库、Scikit-learn库等。 今天我们将利用chatgpt(国内版本-小策智能问答)的辅助帮…...

【机器学习】五、贝叶斯分类
我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴…...
k8s 资源管理方式
k8s中资源管理方式可以划分为下面的几种:命令式对象管理、命令式对象配置、声明式对象配置。 命令式对象管理 命令式对象管理:直接使用命令的方式来操作k8s资源, 这种方式操作简单,但是无法审计和追踪。 kubectl run nginx-pod --imagengi…...

Golang Gin 接口返回 Excel 文件
文章目录 1.Web 页面导出数据到文件由后台实现还是前端实现?2.Golang Excel 库选型3.后台实现示例4.xlsx 库的问题5.小结参考文献 1.Web 页面导出数据到文件由后台实现还是前端实现? Web 页面导出表数据到 Excel(或其他格式)可以…...

实战之巧用header头
案例: 遇到过三次 一次是更改accept,获取到tomcat的绝对路径,结合其他漏洞获取到shell。 一次是更改accept,越权获取到管理员的MD5加密,最后接管超管权限。 一次是更改accept,结合参数获取到key。 这里以越…...
[AUTOSAR][诊断管理][ECU][$36] 数据传输
文章目录 一、简介二、服务请求报文定义三、服务请求报文中参数定义(1)blockSequenceCounter(2)transferRequestParameterRecord三、肯定响应(1)blockSequenceCounter(2)transferResponseParameterRecord四、支持的NRC五、示例代码36_transfer_data.c一、简介 这个服务…...

sw 怎么装新版本
我们在安装solidworks时,有时候会提示A newer version of this applic ation is already installed. Installation stopped.如下图所示 这时候需要点继续安装 然后会出现下图所示情况,vba7.1安装未成功 这是因为我们电脑中以前安装过更高版本的solidw…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...