当前位置: 首页 > news >正文

llava1.5模型安装、预测、训练详细教程

引言

本博客介绍LLava1.5多模态大模型的安装教程、训练教程、预测教程,也会涉及到hugging face使用与wandb使用。

源码链接:点击这里

demo链接:点击这里

论文链接:点击这里

一、系统环境

ubuntu 20.04
gpu: 2*3090
cuda:11.6

二、LLava环境安装

1、代码下载

git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA

2、虚拟环境构建

conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip  # enable PEP 660 support

3、模型预测安装

pip install -e .

4、模型训练环境安装

pip install -e ".[train]"
pip install flash-attn --no-build-isolation  # 可能安装失败

5、flash-attn离线环境安装

根据对应环境格式下载相应flash-attn,
flash-attn下载链接点击这里
实际为whl的离线文件,在使用pip install *.whl 即可

三、LLava推理运行

1、启动网页预测(类似服务端与客户端)

Launch a controller

python -m llava.serve.controller --host 0.0.0.0 --port 10000

Launch a gradio web server.

python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload

注:host 0.0.0.0表示自动填充本机ip,网页将其替换本机ip即可,web server启动后会有网页ip,若在其它电脑将其0.0.0.0替换运行服务器的ip即可。

2、推理权重下载

我们使用llava-v1.5-7b模型做推理。

llava-v1.5-7b权重下载

权重下载地址:点击这里

权重下载,需要使用hugging face才能下载,自己注册账号即可,文件格式如下:
在这里插入图片描述

将图示文件全部下载,内有一个config.json文件,该文件很重要,部分内容如下:

在这里插入图片描述

该文件可看出视觉编码也缺少相应权重,需下载如下内容,并将其路径修改本地权重保存文件。

clip-vit-large-patch14-336权重下载

权重下载地址:点击这里
该文件可通过点击链接连接,也可在hugging face自行搜索。
在这里插入图片描述

同理,也是全部下载,放到一个文件夹中。

3、启动预测模型

若已完成权重下载,便可执行以下模型启动命令,而–model-path后面需跟模型权重路径文件,若联网能范文hugging face便可无需修改直接使用官方给定命令。

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b

–load-4bit: 该指令也可加上,使用4bit模型推理

四、LLava的lora训练

1、权重下载

根据下图的finetune_lora.sh文件指定权重在hugging face下载即可,如下图。

在这里插入图片描述

下载好对应权重,即可修改路径路径,如下:
在这里插入图片描述

2、数据准备

使用官网也行,若不想下载太多,使用下面代码准备部分也行,如下:

import jsonif __name__ == '__main__':json_root=r'*\llava_v1_5_mix665k.json'with open(json_root, 'r') as f:json_info = json.load(f)save_info=json_info[:1000]+json_info[480000:481000]+json_info[620000:621000]with open('info.json', 'w') as fp:json.dump(save_info, fp, indent=4)

数据图如下:
在这里插入图片描述

3、训练命令

我是将其移动到LLAVA文件内,直接执行此命令:

finetune_lora.sh

4、报错处理

模型有可能报数据错误,此时不用担心,该问题是数据的问题,如下:
在这里插入图片描述

直接修改上面代码如下:

def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):# We need to use torch for the random part as a distributed sampler will set the random seed for torch.assert all(l != 0 for l in lengths), "Should not have zero length."mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])# lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])lang_indices, lang_lengths=mm_indices, mm_lengthsassert len(mm_indices) > 0, "Should have at least one multimodal sample."assert len(lang_indices) > 0, "Should have at least one language sample."

也有可能有其它数据问题,是可能无eval数据,添加以下红色框即可,如下:

在这里插入图片描述

5、训练效果

若完成以上方式,使用训练命令,可实现如下训练效果:
在这里插入图片描述

6、训练使用wandb

llava训练自带wandb方式显示化查看,训练代码会自动提醒你,你只需注册,然后将其key复制,即可实现,其效果如下:
在这里插入图片描述

在这里插入图片描述

总结

以上便llava所有运行过程,愿踩过的坑对你有帮助。最后,我额外说下,我使用4090显卡搭建,跑测试问题不大,大概16g左右吧,跑训练一张24G卡有些够呛。

相关文章:

llava1.5模型安装、预测、训练详细教程

引言 本博客介绍LLava1.5多模态大模型的安装教程、训练教程、预测教程&#xff0c;也会涉及到hugging face使用与wandb使用。 源码链接:点击这里 demo链接:点击这里 论文链接:点击这里 一、系统环境 ubuntu 20.04 gpu: 2*3090 cuda:11.6 二、LLava环境安装 1、代码下载…...

一个ppt带你读懂网络安全行业四大顶会之一的ndss论文<<Large Language Model guided Protocol Fuzzing>>

论文下载地址&#xff1a; Large Language Model guided Protocol Fuzzing...

ajax调用springboot后台接口

工具 api测试工具 由于后台接口不是同一个团队编写的&#xff0c;在文档缺失的情况下&#xff0c;需要测试后台接口接收参数类型&#xff0c;可以使用这个工具&#xff0c;注册很方便 页面如下所示&#xff0c;可以选择请求方法是get&#xff0c;或者post 重点介绍两种&…...

2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models

2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models Paper: https://arxiv.org/abs/2106.09685 Code: https://github.com/microsoft/LoRA 大型语言模型的LoRA低秩自适应 自然语言处理的一个重要范式包括对通用领域数据的大规模预训练和对特定任务或领域的适应。…...

dockefile

文章目录 应用的部署MySql的部署Tomcat的部署 dockerfileDocker原理镜像的制作容器转镜像Dockerfile 服务编排Docker Compose Docker 私有仓库 应用的部署 搜索app的镜像拉去app的镜像创建容器操作容器中的app MySql的部署 容器内的网络服务和外部机器无法直接通信外部机器和…...

rpc入门笔记 0x02 protobuf的杂七杂八

syntax "proto3"; // 这是个proto3的文件message HelloRequest{ // 创建数据对象string name 1; // name表示名称&#xff0c;编号是1 }生成python文件 安装grpcio和grpcio-tools库 pip install grpcio #安装grpc pip install grpcio-tools #安装grpc tools生成…...

keepalived与nginx与MySQL

keepalived VRRP介绍 集群&#xff08;cluster&#xff09;技术是一种较新的技术&#xff0c;通过集群技术&#xff0c;可以在付出较低成本的情况下获得在性能、可靠性、灵活性方面的相对较高的收益&#xff0c;其任务调度则是集群系统中的核心技术。 集群组成后&#xff0c;可…...

Pod基础概念

Pod是kubernetes中最小的资源管理组件&#xff0c;Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的&#xff0c;例如&#xff0c;用于管理Pod运行的StatefulSet和Deployment等控…...

WebDAV之π-Disk派盘 + 一叶日记

推荐一款操作方便、界面简洁,记录生活点滴与心情,具有诗情画意的日记软件。 一叶日记是一款记录日记的手机软件,在这款软件中它里面有着各种不同的工具,可以方便用户去随时随地的记录日记,同时里面还有着各种不同的主题背景,可以供用户去选择使用各种功能,给用户记录带…...

在IDEA运行spark程序(搭建Spark开发环境)

建议大家写在Linux上搭建好Hadoop的完全分布式集群环境和Spark集群环境&#xff0c;以下在IDEA中搭建的环境仅仅是在window系统上进行spark程序的开发学习&#xff0c;在window系统上可以不用安装hadoop和spark&#xff0c;spark程序可以通过pom.xml的文件配置&#xff0c;添加…...

无穷级数例子

计算 lim ⁡ x → ∞ ( 1 n 1 1 n 2 1 n 3 . . . 1 n 2 n − 1 1 n 2 n ) 计算\lim _{x\to \infty} (\frac{1}{n1} \frac{1}{n2}\frac{1}{n3} ... \frac{1}{n2n-1} \frac{1}{n2n} ) 计算x→∞lim​(n11​n21​n31​...n2n−11​n2n1​) 解&#xff1a; lim ⁡ x …...

C++构造函数和析构函数详解

一、构造函数 1、概念 构造函数是特殊的成员函数&#xff0c;需要注意的是&#xff0c;构造函数虽然名叫做构造&#xff0c;但是构造函数的主要任务并不是开空间创建对象&#xff0c;而是初始化对象。 2、特征 函数名与类名相同。无返回值对象实例化时编译器自动调用对应的…...

MySQL数据库干货_16—— SQL99标准中的查询

SQL99标准中的查询 MySQL5.7 支持部分的SQL99 标准。 SQL99中的交叉连接(CROSS JOIN) 示例&#xff1a; 使用交叉连接查询 employees 表与 departments 表。 select * from employees cross join departments;SQL99中的自然连接(NATURAL JOIN) 自然连接 连接只能发生在两…...

LLM大语言模型训练中常见的技术:微调与嵌入

微调&#xff08;Fine-Tuning&#xff09;&#xff1a; 微调是一种用于预训练语言模型的技术。在预训练阶段&#xff0c;语言模型&#xff08;如GPT-3.5&#xff09;通过大规模的文本数据集进行训练&#xff0c;从而学会了语言的语法、语义和世界知识。然后&#xff0c;在微调阶…...

每日一练 | 网络工程师软考真题Day47

阅读以下关于Linux文件系统和Samba效劳的说明&#xff0c;答复以下【问题1】至【问题3】。 【说明】 Linux系统采用了树型多级目录来管理文件&#xff0c;树型结构的最上层是根目录&#xff0c;其他的所有目录都是从根目录生成的。通过Samba可以实现基于Linux操作系统的效劳器和…...

Kafka - 监控工具 Kafka Eagle:实时洞察Kafka集群的利器

文章目录 引言Kafka Eagle简介Kafka Eagle的特点Kafka Eagle的优势使用Kafka Eagle的步骤结论 引言 在现代大数据架构中&#xff0c;Apache Kafka已成为一个不可或缺的组件&#xff0c;用于可靠地处理和传输大规模的数据流。然而&#xff0c;随着Kafka集群规模的不断增长&…...

infercnv hpc东南服务器 .libpath 最终使用monocle2环境安装

安装不成功就用conda安装 conda install -c bioconda bioconductor-infercnv Installing infercnv There are several options for installing inferCNV. Choose whichever you prefer: Option A: Install infercnv from BioConductor (preferred) From within R, run the…...

【音视频 | Ogg】RFC3533 :Ogg封装格式版本 0(The Ogg Encapsulation Format Version 0)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

Hadoop时代落幕,开源大数据将何去何从?

Hadoop时代落幕&#xff0c;谁是大数据的新宠儿&#xff1f; 1、 1、...

作为一名程序员面临哪些挑战?应该如何应对?

在现今互联网失业潮的大环境下&#xff0c;每一位程序员都面临着被淘汰的风险&#xff0c;但逃避没有用&#xff0c;今天我们就来总结这些挑战与风险&#xff0c;找准自己的方向与定位&#xff0c;做好职业规划&#xff0c;希望这些信息能对大家有所帮助。 一、面临的挑战 老…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...