当前位置: 首页 > news >正文

【强化学习】14 —— A3C(Asynchronous Advantage Actor Critic)

A3C算法( Asynchronous Methods for Deep Reinforcement Learning)于2016年被谷歌DeepMind团队提出。A3C是一种非常有效的深度强化学习算法,在围棋、星际争霸等复杂任务上已经取得了很好的效果。接下来,我们先从A3C的名称入手,去解析这个算法。
在这里插入图片描述

Diagram of A3C high-level architecture.

A3C代表了异步优势动作评价(Asynchronous Advantage Actor Critic)

  • 异步(Asynchronous):因为算法涉及并行执行一组环境。与DQN不同,DQN中单个神经网络代表的单个智能体与单个环境交互,而A3C利用上述多个化身来更有效地学习。在A3C中,有一个全局网络(global network)和多个工作智能体(worker),每个智能体都有自己的网络参数集。这些智能体中的每一个都与它自己的环境副本交互,同时其他智能体与它们的环境交互(并行训练)。这比单个智能体(除了加速完成更多工作)更好的原因在于,每个智能体的经验独立于其他智能体的经验。这样,可用于训练的整体经验多样化

  • 优势(Advantage):因为策略梯度的更新使用优势函数

  • 动作评价(Actor Critic):因为这是一种动作评价(actor-critic)方法,它涉及一个在学得的状态值函数帮助下进行更新的策略 ∇ θ ′ log ⁡ π ( a t ∣ s t ; θ ′ ) A ( s t , a t ; θ v ) A ( s t , a t ; θ v ) = ∑ i = 0 k − 1 γ i r t + i + γ k V ( s t + k ; θ v ) − V ( s t ; θ v ) \begin{gathered}\nabla_{\theta'}\log\pi(a_t|s_t;\theta')A(s_t,a_t;\theta_v)\\\\A(s_t,a_t;\theta_v)=\sum_{i=0}^{k-1}\gamma^ir_{t+i}+\gamma^kV(s_{t+k};\theta_v)-V(s_t;\theta_v)\end{gathered} θlogπ(atst;θ)A(st,at;θv)A(st,at;θv)=i=0k1γirt+i+γkV(st+k;θv)V(st;θv)

    • 可以用 k k k步的bootstrap进行更新。

下图是一个基于16个环境平行训练的图示说明。
在这里插入图片描述

Actor-Critic Methods: A3C and A2C

A3C图示说明

  • 16个并行环境
  • θ \theta θ指的是策略的参数(actor), θ v \theta_v θv指的是值函数的参数(critic),两者梯度分别更新, α \alpha α α v \alpha_v αv则是相应的学习率。
  • 该算法为了鼓励探索,在策略更新中加入了一个熵奖励正则化项(嵌入在 d θ d\theta dθ中)。
  • 使用Hogwild!作为更新方法。Hogwild!是一种并行更新的方法,其中多个线程可能会同时更新共享参数。这种并行更新可能会导致线程间的冲突,但在这里作者认为这不会造成太大问题。
  • 在计算策略的优势时,算法采用了前向视角(forward view)的n步回报,而不是后向视角(backward view)。前向视角与后向视角的区别在于如何计算多步的奖励。后向视角的计算需要用到资格迹(eligibility traces),详情参考Sutton的圣经。

A3C算法伪代码
在这里插入图片描述
A3C算法实现
在这里插入图片描述

Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous Actor-Critic Agents (A3C)

  1. 每个worker从global network复制参数
  2. 不同的worker与环境去做互动
  3. 不同的worker计算出各自的gradient
  4. 不同的worker把各自的gradient传回给global network
  5. global network接收到gradient后进行参数更新

Tensorflow版本代码

代码结构:

  • AC_Network这个类包含了创建网络本身的所有Tensorflow操作。
  • Worker这个类包含了AC_Network的一个副本,一个环境类,以及与环境交互和更新全局网络的所有逻辑。
  • 用于建立Worker实例并并行运行它们的高级代码。

Pytorch版本代码

参考了莫烦python——https://github.com/MorvanZhou/pytorch-A3C/tree/master
以及https://github.com/cyoon1729/Policy-Gradient-Methods/blob/master/a3c/a3c.py
(代码基于gymnasium去做的,但还有些问题,之后修改完再放出来),下面是运行上述代码中产生的问题:

  1. 莫烦python理想的结果如下所示
    在这里插入图片描述
    但在实际运行中出现下面两幅图的情况,reward达到峰值后迅速下降,猜测可能是worker学习到不好的策略,同步给global,使得原本好的策略持续变坏?

在这里插入图片描述
在这里插入图片描述
另一个版本的代码收敛较快,运行良好。也是利用交叉熵去作为正则化项的。在这里插入图片描述

w0 | episode: 978 391.0
w5 | episode: 979 396.0
w3 | episode: 980 399.0
w7 | episode: 981 500.0
w4 | episode: 982 383.0
w1 | episode: 983 500.0
w6 | episode: 984 500.0
w2 | episode: 985 500.0
w0 | episode: 986 500.0
w5 | episode: 987 500.0
w3 | episode: 988 500.0
w4 | episode: 989 500.0
w7 | episode: 990 500.0
w1 | episode: 991 500.0
w6 | episode: 992 500.0
w2 | episode: 993 500.0
w0 | episode: 994 500.0
w5 | episode: 995 500.0
w3 | episode: 996 500.0
w7 | episode: 997 500.0
w4 | episode: 998 500.0
w1 | episode: 999 500.0
w6 | episode: 1000 500.0

参考

[1] 伯禹AI
[2] https://www.davidsilver.uk/teaching/
[3] 动手学强化学习
[4] Reinforcement Learning
[5] Asynchronous Methods for Deep Reinforcement Learning
[6] 第9章演员-评论员算法
[7] Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous Actor-Critic Agents (A3C)
[8] Actor-Critic Methods: A3C and A2C
[9] https://mofanpy.com/tutorials/machine-learning/reinforcement-learning/intro-A3C

相关文章:

【强化学习】14 —— A3C(Asynchronous Advantage Actor Critic)

A3C算法( Asynchronous Methods for Deep Reinforcement Learning)于2016年被谷歌DeepMind团队提出。A3C是一种非常有效的深度强化学习算法,在围棋、星际争霸等复杂任务上已经取得了很好的效果。接下来,我们先从A3C的名称入手&…...

Google单元测试sample分析(四)

GoogleTest单元测试可用实现在每个测试用例结束后监控其内存使用情况, 可以通过GoogleTest提供的事件侦听器EmptyTestEventListener 来实现,下面通过官方提供的sample例子,路径在samples文件夹下的sample10_unittest.cpp // Copyright 2009…...

网络套接字编程(二)

网络套接字编程(二) 文章目录 网络套接字编程(二)简易TCP网络程序服务端创建套接字服务端绑定IP地址和端口号服务端监听服务端运行服务端网络服务服务端启动客户端创建套接字客户端的绑定和监听问题客户端建立连接并通信客户端启动程序测试单执行流服务器的弊端 多进程版TCP网络…...

LLaMA-Adapter源码解析

LLaMA-Adapter源码解析 伪代码 def transformer_block_with_llama_adapter(x, gating_factor, soft_prompt):residual xy zero_init_attention(soft_prompt, x) # llama-adapter: prepend prefixx self_attention(x)x x gating_factor * y # llama-adapter: apply zero_init…...

JavaScript设计模式之发布-订阅模式

发布者和订阅者完全解耦(通过消息队列进行通信) 适用场景:功能模块间进行通信,如Vue的事件总线。 ES6实现方式: class eventManager {constructor() {this.eventList {};}on(eventName, callback) {if (this.eventL…...

mysql---索引

概要 索引:排序的列表,列表当中存储的是索引的值和包含这个值的数据所在的行的物理地址 作用:加快查找速度 注:索引要在创建表时尽量创建完全,后期添加影响变动大。 索引也需要占用磁盘空间,innodb表数据…...

微信小程序——简易复制文本

在微信小程序中,可以使用wx.setClipboardData()方法来实现复制文本内容的功能。以下是一个示例代码: // 点击按钮触发复制事件 copyText: function() {var that this;wx.setClipboardData({data: 要复制的文本内容,success: function(res) {wx.showToa…...

【51单片机】矩阵键盘与定时器(学习笔记)

一、矩阵键盘 1、矩阵键盘概述 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式 采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态 2、扫描的概念 数码管扫描(输出扫描):…...

vue 中使用async await

在程序中使用同步的方式来加载异步的数据的方式: async function() {let promise new Promise((resolve, reject) > {resolve(res);}).then(re > {return re; });await promise; }...

C语言学习之内存区域的划分

内存区域的划分:32位OS可以访问的虚拟内存空间为0~4G;一、内核空间:3~4G;二、用户空间0~3G;栈区:局部变量在栈区分配、由OS负责分配和回收堆区:由程序员手动分配(malloc函数)和回收(free函数);静…...

Unity Animator cpu性能测试

测试案例: 场景中共有4000个物体,挂在40个animtor 上,每个Animator控制100个物体的动画。 使用工具: Unity Profiler. Unity 版本: unity 2019.4.40f1 测试环境: 手机 测试过程: 没有挂…...

数据结构 - 顺序表ArrayList

目录 实现一个通用的顺序表 总结 包装类 装箱 / 装包 和 拆箱 / 拆包 ArrayList 与 顺序表 ArrayList基础功能演示 add 和 addAll ,添加元素功能 ArrayList的扩容机制 来看一下,下面的代码是否存在缺陷 模拟实现 ArrayList add 功能 add ind…...

【Echarts】玫瑰饼图数据交互

在学习echarts玫瑰饼图的过程中,了解到三种数据交互的方法,如果对您也有帮助,不胜欣喜。 一、官网教程 https://echarts.apache.org/examples/zh/editor.html?cpie-roseType-simple (该教程数据在代码中) import *…...

k8s、pod

Pod k8s中的port【端口:30000-32767】 port :为Service 在 cluster IP 上暴露的端口 targetPort:对应容器映射在 pod 端口上 nodePort:可以通过k8s 集群外部使用 node IP node port 访问Service containerPort:容…...

一天掌握python爬虫【基础篇】 涵盖 requests、beautifulsoup、selenium

大家好,我是python222小锋老师。前段时间卷了一套 Python3零基础7天入门实战 以及1小时掌握Python操作Mysql数据库之pymysql模块技术 近日锋哥又卷了一波课程,python爬虫【基础篇】 涵盖 requests、beautifulsoup、selenium,文字版视频版。1…...

睿趣科技:想知道开抖音小店的成本

随着互联网的发展,越来越多的人开始尝试通过开设网店来创业。抖音作为目前最受欢迎的短视频平台之一,也提供了开店的功能。那么,开一家抖音小店需要多少成本呢? 首先,我们需要了解的是,抖音小店的开店费用是…...

python项目部署代码汇总:目标检测类、人体姿态类

一、AI健身计数 1、图片视频检测 (cpu运行): 注:左上角为fps,左下角为次数统计。 1.哑铃弯举:12,14,16 详细环境安装教程:pyqt5AI健身CPU实时检测mediapipe 可视化界面…...

力扣每日一题92:反转链表||

题目描述&#xff1a; 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输…...

Vue+OpenLayers从入门到实战进阶案例汇总目录,兼容OpenLayers7和OpenLayers8

本篇作为《VueOpenLayers入门教程》和《VueOpenLayers实战进阶案例》所有文章的二合一汇总目录&#xff0c;方便查找。 本专栏源码是由OpenLayers结合Vue框架编写。 本专栏从Vue搭建脚手架到如何引入OpenLayers依赖的每一步详细新手教程&#xff0c;再到通过各种入门案例和综合…...

C#中使用LINQtoSQL管理SQL数据库之添加、修改和删除

目录 一、添加数据 二、修改数据 三、删除数据 四、添加、修改和删除的源码 五、生成效果 1.VS和SSMS原始记录 2.删除ID2和5的记录 3.添加记录ID2、5和8 4.修改ID3和ID4的记录 用LINQtoSQL管理SQL Server数据库时&#xff0c;主要有添加、修改和删除3种操作。 项目中创…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...