当前位置: 首页 > news >正文

【强化学习】14 —— A3C(Asynchronous Advantage Actor Critic)

A3C算法( Asynchronous Methods for Deep Reinforcement Learning)于2016年被谷歌DeepMind团队提出。A3C是一种非常有效的深度强化学习算法,在围棋、星际争霸等复杂任务上已经取得了很好的效果。接下来,我们先从A3C的名称入手,去解析这个算法。
在这里插入图片描述

Diagram of A3C high-level architecture.

A3C代表了异步优势动作评价(Asynchronous Advantage Actor Critic)

  • 异步(Asynchronous):因为算法涉及并行执行一组环境。与DQN不同,DQN中单个神经网络代表的单个智能体与单个环境交互,而A3C利用上述多个化身来更有效地学习。在A3C中,有一个全局网络(global network)和多个工作智能体(worker),每个智能体都有自己的网络参数集。这些智能体中的每一个都与它自己的环境副本交互,同时其他智能体与它们的环境交互(并行训练)。这比单个智能体(除了加速完成更多工作)更好的原因在于,每个智能体的经验独立于其他智能体的经验。这样,可用于训练的整体经验多样化

  • 优势(Advantage):因为策略梯度的更新使用优势函数

  • 动作评价(Actor Critic):因为这是一种动作评价(actor-critic)方法,它涉及一个在学得的状态值函数帮助下进行更新的策略 ∇ θ ′ log ⁡ π ( a t ∣ s t ; θ ′ ) A ( s t , a t ; θ v ) A ( s t , a t ; θ v ) = ∑ i = 0 k − 1 γ i r t + i + γ k V ( s t + k ; θ v ) − V ( s t ; θ v ) \begin{gathered}\nabla_{\theta'}\log\pi(a_t|s_t;\theta')A(s_t,a_t;\theta_v)\\\\A(s_t,a_t;\theta_v)=\sum_{i=0}^{k-1}\gamma^ir_{t+i}+\gamma^kV(s_{t+k};\theta_v)-V(s_t;\theta_v)\end{gathered} θlogπ(atst;θ)A(st,at;θv)A(st,at;θv)=i=0k1γirt+i+γkV(st+k;θv)V(st;θv)

    • 可以用 k k k步的bootstrap进行更新。

下图是一个基于16个环境平行训练的图示说明。
在这里插入图片描述

Actor-Critic Methods: A3C and A2C

A3C图示说明

  • 16个并行环境
  • θ \theta θ指的是策略的参数(actor), θ v \theta_v θv指的是值函数的参数(critic),两者梯度分别更新, α \alpha α α v \alpha_v αv则是相应的学习率。
  • 该算法为了鼓励探索,在策略更新中加入了一个熵奖励正则化项(嵌入在 d θ d\theta dθ中)。
  • 使用Hogwild!作为更新方法。Hogwild!是一种并行更新的方法,其中多个线程可能会同时更新共享参数。这种并行更新可能会导致线程间的冲突,但在这里作者认为这不会造成太大问题。
  • 在计算策略的优势时,算法采用了前向视角(forward view)的n步回报,而不是后向视角(backward view)。前向视角与后向视角的区别在于如何计算多步的奖励。后向视角的计算需要用到资格迹(eligibility traces),详情参考Sutton的圣经。

A3C算法伪代码
在这里插入图片描述
A3C算法实现
在这里插入图片描述

Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous Actor-Critic Agents (A3C)

  1. 每个worker从global network复制参数
  2. 不同的worker与环境去做互动
  3. 不同的worker计算出各自的gradient
  4. 不同的worker把各自的gradient传回给global network
  5. global network接收到gradient后进行参数更新

Tensorflow版本代码

代码结构:

  • AC_Network这个类包含了创建网络本身的所有Tensorflow操作。
  • Worker这个类包含了AC_Network的一个副本,一个环境类,以及与环境交互和更新全局网络的所有逻辑。
  • 用于建立Worker实例并并行运行它们的高级代码。

Pytorch版本代码

参考了莫烦python——https://github.com/MorvanZhou/pytorch-A3C/tree/master
以及https://github.com/cyoon1729/Policy-Gradient-Methods/blob/master/a3c/a3c.py
(代码基于gymnasium去做的,但还有些问题,之后修改完再放出来),下面是运行上述代码中产生的问题:

  1. 莫烦python理想的结果如下所示
    在这里插入图片描述
    但在实际运行中出现下面两幅图的情况,reward达到峰值后迅速下降,猜测可能是worker学习到不好的策略,同步给global,使得原本好的策略持续变坏?

在这里插入图片描述
在这里插入图片描述
另一个版本的代码收敛较快,运行良好。也是利用交叉熵去作为正则化项的。在这里插入图片描述

w0 | episode: 978 391.0
w5 | episode: 979 396.0
w3 | episode: 980 399.0
w7 | episode: 981 500.0
w4 | episode: 982 383.0
w1 | episode: 983 500.0
w6 | episode: 984 500.0
w2 | episode: 985 500.0
w0 | episode: 986 500.0
w5 | episode: 987 500.0
w3 | episode: 988 500.0
w4 | episode: 989 500.0
w7 | episode: 990 500.0
w1 | episode: 991 500.0
w6 | episode: 992 500.0
w2 | episode: 993 500.0
w0 | episode: 994 500.0
w5 | episode: 995 500.0
w3 | episode: 996 500.0
w7 | episode: 997 500.0
w4 | episode: 998 500.0
w1 | episode: 999 500.0
w6 | episode: 1000 500.0

参考

[1] 伯禹AI
[2] https://www.davidsilver.uk/teaching/
[3] 动手学强化学习
[4] Reinforcement Learning
[5] Asynchronous Methods for Deep Reinforcement Learning
[6] 第9章演员-评论员算法
[7] Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous Actor-Critic Agents (A3C)
[8] Actor-Critic Methods: A3C and A2C
[9] https://mofanpy.com/tutorials/machine-learning/reinforcement-learning/intro-A3C

相关文章:

【强化学习】14 —— A3C(Asynchronous Advantage Actor Critic)

A3C算法( Asynchronous Methods for Deep Reinforcement Learning)于2016年被谷歌DeepMind团队提出。A3C是一种非常有效的深度强化学习算法,在围棋、星际争霸等复杂任务上已经取得了很好的效果。接下来,我们先从A3C的名称入手&…...

Google单元测试sample分析(四)

GoogleTest单元测试可用实现在每个测试用例结束后监控其内存使用情况, 可以通过GoogleTest提供的事件侦听器EmptyTestEventListener 来实现,下面通过官方提供的sample例子,路径在samples文件夹下的sample10_unittest.cpp // Copyright 2009…...

网络套接字编程(二)

网络套接字编程(二) 文章目录 网络套接字编程(二)简易TCP网络程序服务端创建套接字服务端绑定IP地址和端口号服务端监听服务端运行服务端网络服务服务端启动客户端创建套接字客户端的绑定和监听问题客户端建立连接并通信客户端启动程序测试单执行流服务器的弊端 多进程版TCP网络…...

LLaMA-Adapter源码解析

LLaMA-Adapter源码解析 伪代码 def transformer_block_with_llama_adapter(x, gating_factor, soft_prompt):residual xy zero_init_attention(soft_prompt, x) # llama-adapter: prepend prefixx self_attention(x)x x gating_factor * y # llama-adapter: apply zero_init…...

JavaScript设计模式之发布-订阅模式

发布者和订阅者完全解耦(通过消息队列进行通信) 适用场景:功能模块间进行通信,如Vue的事件总线。 ES6实现方式: class eventManager {constructor() {this.eventList {};}on(eventName, callback) {if (this.eventL…...

mysql---索引

概要 索引:排序的列表,列表当中存储的是索引的值和包含这个值的数据所在的行的物理地址 作用:加快查找速度 注:索引要在创建表时尽量创建完全,后期添加影响变动大。 索引也需要占用磁盘空间,innodb表数据…...

微信小程序——简易复制文本

在微信小程序中,可以使用wx.setClipboardData()方法来实现复制文本内容的功能。以下是一个示例代码: // 点击按钮触发复制事件 copyText: function() {var that this;wx.setClipboardData({data: 要复制的文本内容,success: function(res) {wx.showToa…...

【51单片机】矩阵键盘与定时器(学习笔记)

一、矩阵键盘 1、矩阵键盘概述 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式 采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态 2、扫描的概念 数码管扫描(输出扫描):…...

vue 中使用async await

在程序中使用同步的方式来加载异步的数据的方式: async function() {let promise new Promise((resolve, reject) > {resolve(res);}).then(re > {return re; });await promise; }...

C语言学习之内存区域的划分

内存区域的划分:32位OS可以访问的虚拟内存空间为0~4G;一、内核空间:3~4G;二、用户空间0~3G;栈区:局部变量在栈区分配、由OS负责分配和回收堆区:由程序员手动分配(malloc函数)和回收(free函数);静…...

Unity Animator cpu性能测试

测试案例: 场景中共有4000个物体,挂在40个animtor 上,每个Animator控制100个物体的动画。 使用工具: Unity Profiler. Unity 版本: unity 2019.4.40f1 测试环境: 手机 测试过程: 没有挂…...

数据结构 - 顺序表ArrayList

目录 实现一个通用的顺序表 总结 包装类 装箱 / 装包 和 拆箱 / 拆包 ArrayList 与 顺序表 ArrayList基础功能演示 add 和 addAll ,添加元素功能 ArrayList的扩容机制 来看一下,下面的代码是否存在缺陷 模拟实现 ArrayList add 功能 add ind…...

【Echarts】玫瑰饼图数据交互

在学习echarts玫瑰饼图的过程中,了解到三种数据交互的方法,如果对您也有帮助,不胜欣喜。 一、官网教程 https://echarts.apache.org/examples/zh/editor.html?cpie-roseType-simple (该教程数据在代码中) import *…...

k8s、pod

Pod k8s中的port【端口:30000-32767】 port :为Service 在 cluster IP 上暴露的端口 targetPort:对应容器映射在 pod 端口上 nodePort:可以通过k8s 集群外部使用 node IP node port 访问Service containerPort:容…...

一天掌握python爬虫【基础篇】 涵盖 requests、beautifulsoup、selenium

大家好,我是python222小锋老师。前段时间卷了一套 Python3零基础7天入门实战 以及1小时掌握Python操作Mysql数据库之pymysql模块技术 近日锋哥又卷了一波课程,python爬虫【基础篇】 涵盖 requests、beautifulsoup、selenium,文字版视频版。1…...

睿趣科技:想知道开抖音小店的成本

随着互联网的发展,越来越多的人开始尝试通过开设网店来创业。抖音作为目前最受欢迎的短视频平台之一,也提供了开店的功能。那么,开一家抖音小店需要多少成本呢? 首先,我们需要了解的是,抖音小店的开店费用是…...

python项目部署代码汇总:目标检测类、人体姿态类

一、AI健身计数 1、图片视频检测 (cpu运行): 注:左上角为fps,左下角为次数统计。 1.哑铃弯举:12,14,16 详细环境安装教程:pyqt5AI健身CPU实时检测mediapipe 可视化界面…...

力扣每日一题92:反转链表||

题目描述&#xff1a; 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输…...

Vue+OpenLayers从入门到实战进阶案例汇总目录,兼容OpenLayers7和OpenLayers8

本篇作为《VueOpenLayers入门教程》和《VueOpenLayers实战进阶案例》所有文章的二合一汇总目录&#xff0c;方便查找。 本专栏源码是由OpenLayers结合Vue框架编写。 本专栏从Vue搭建脚手架到如何引入OpenLayers依赖的每一步详细新手教程&#xff0c;再到通过各种入门案例和综合…...

C#中使用LINQtoSQL管理SQL数据库之添加、修改和删除

目录 一、添加数据 二、修改数据 三、删除数据 四、添加、修改和删除的源码 五、生成效果 1.VS和SSMS原始记录 2.删除ID2和5的记录 3.添加记录ID2、5和8 4.修改ID3和ID4的记录 用LINQtoSQL管理SQL Server数据库时&#xff0c;主要有添加、修改和删除3种操作。 项目中创…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...