当前位置: 首页 > news >正文

LLaMA-Adapter源码解析

LLaMA-Adapter源码解析

伪代码

def transformer_block_with_llama_adapter(x, gating_factor, soft_prompt):residual =xy= zero_init_attention(soft_prompt, x) # llama-adapter: prepend prefixx= self_attention(x)x = x+ gating_factor * y  # llama-adapter: apply zero_init_attentionx = LayerNorm(x+residual)residual = xx = FullyConnectedLayers(x)x = AdapterLayers(x)x = LayerNorm(x + residual)return x

源码

class Attention(nn.Module):def __init__(self, args: ModelArgs):super().__init__()self.n_local_heads = args.n_heads // fs_init.get_model_parallel_world_size()self.head_dim = args.dim // args.n_headsself.wq = ColumnParallelLinear(args.dim,args.n_heads * self.head_dim,bias=False,gather_output=False,init_method=lambda x: x,)self.wk = ColumnParallelLinear(args.dim,args.n_heads * self.head_dim,bias=False,gather_output=False,init_method=lambda x: x,)self.wv = ColumnParallelLinear(args.dim,args.n_heads * self.head_dim,bias=False,gather_output=False,init_method=lambda x: x,)self.wo = RowParallelLinear(args.n_heads * self.head_dim,args.dim,bias=False,input_is_parallel=True,init_method=lambda x: x,)self.cache_k = torch.zeros((args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)).cuda()self.cache_v = torch.zeros((args.max_batch_size, args.max_seq_len, self.n_local_heads, self.head_dim)).cuda()self.gate = torch.nn.Parameter(torch.zeros(1))def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], adapter=None):bsz, seqlen, _ = x.shapexq, xk, xv = self.wq(x), self.wk(x), self.wv(x)xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)self.cache_k = self.cache_k.to(xq)self.cache_v = self.cache_v.to(xq)self.cache_k[:bsz, start_pos : start_pos + seqlen] = xkself.cache_v[:bsz, start_pos : start_pos + seqlen] = xvkeys = self.cache_k[:bsz, : start_pos + seqlen]values = self.cache_v[:bsz, : start_pos + seqlen]if adapter is not None:adapter_len = adapter.shape[1]adapter_k = self.wk(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)adapter_v = self.wv(adapter).view(1, adapter_len, self.n_local_heads, self.head_dim).repeat(bsz, 1, 1, 1)adapter_k = adapter_k.transpose(1, 2)adapter_v = adapter_v.transpose(1, 2)xq = xq.transpose(1, 2)keys = keys.transpose(1, 2)values = values.transpose(1, 2)scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)if mask is not None:scores = scores + mask  # (bs, n_local_heads, slen, cache_len + slen)scores = F.softmax(scores.float(), dim=-1).type_as(xq)output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)if adapter is not None:adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)adapter_scores = self.gate * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)output = output + torch.matmul(adapter_scores, adapter_v)output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)return self.wo(output)

相关文章:

LLaMA-Adapter源码解析

LLaMA-Adapter源码解析 伪代码 def transformer_block_with_llama_adapter(x, gating_factor, soft_prompt):residual xy zero_init_attention(soft_prompt, x) # llama-adapter: prepend prefixx self_attention(x)x x gating_factor * y # llama-adapter: apply zero_init…...

JavaScript设计模式之发布-订阅模式

发布者和订阅者完全解耦(通过消息队列进行通信) 适用场景:功能模块间进行通信,如Vue的事件总线。 ES6实现方式: class eventManager {constructor() {this.eventList {};}on(eventName, callback) {if (this.eventL…...

mysql---索引

概要 索引:排序的列表,列表当中存储的是索引的值和包含这个值的数据所在的行的物理地址 作用:加快查找速度 注:索引要在创建表时尽量创建完全,后期添加影响变动大。 索引也需要占用磁盘空间,innodb表数据…...

微信小程序——简易复制文本

在微信小程序中,可以使用wx.setClipboardData()方法来实现复制文本内容的功能。以下是一个示例代码: // 点击按钮触发复制事件 copyText: function() {var that this;wx.setClipboardData({data: 要复制的文本内容,success: function(res) {wx.showToa…...

【51单片机】矩阵键盘与定时器(学习笔记)

一、矩阵键盘 1、矩阵键盘概述 在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式 采用逐行或逐列的“扫描”,就可以读出任何位置按键的状态 2、扫描的概念 数码管扫描(输出扫描):…...

vue 中使用async await

在程序中使用同步的方式来加载异步的数据的方式: async function() {let promise new Promise((resolve, reject) > {resolve(res);}).then(re > {return re; });await promise; }...

C语言学习之内存区域的划分

内存区域的划分:32位OS可以访问的虚拟内存空间为0~4G;一、内核空间:3~4G;二、用户空间0~3G;栈区:局部变量在栈区分配、由OS负责分配和回收堆区:由程序员手动分配(malloc函数)和回收(free函数);静…...

Unity Animator cpu性能测试

测试案例: 场景中共有4000个物体,挂在40个animtor 上,每个Animator控制100个物体的动画。 使用工具: Unity Profiler. Unity 版本: unity 2019.4.40f1 测试环境: 手机 测试过程: 没有挂…...

数据结构 - 顺序表ArrayList

目录 实现一个通用的顺序表 总结 包装类 装箱 / 装包 和 拆箱 / 拆包 ArrayList 与 顺序表 ArrayList基础功能演示 add 和 addAll ,添加元素功能 ArrayList的扩容机制 来看一下,下面的代码是否存在缺陷 模拟实现 ArrayList add 功能 add ind…...

【Echarts】玫瑰饼图数据交互

在学习echarts玫瑰饼图的过程中,了解到三种数据交互的方法,如果对您也有帮助,不胜欣喜。 一、官网教程 https://echarts.apache.org/examples/zh/editor.html?cpie-roseType-simple (该教程数据在代码中) import *…...

k8s、pod

Pod k8s中的port【端口:30000-32767】 port :为Service 在 cluster IP 上暴露的端口 targetPort:对应容器映射在 pod 端口上 nodePort:可以通过k8s 集群外部使用 node IP node port 访问Service containerPort:容…...

一天掌握python爬虫【基础篇】 涵盖 requests、beautifulsoup、selenium

大家好,我是python222小锋老师。前段时间卷了一套 Python3零基础7天入门实战 以及1小时掌握Python操作Mysql数据库之pymysql模块技术 近日锋哥又卷了一波课程,python爬虫【基础篇】 涵盖 requests、beautifulsoup、selenium,文字版视频版。1…...

睿趣科技:想知道开抖音小店的成本

随着互联网的发展,越来越多的人开始尝试通过开设网店来创业。抖音作为目前最受欢迎的短视频平台之一,也提供了开店的功能。那么,开一家抖音小店需要多少成本呢? 首先,我们需要了解的是,抖音小店的开店费用是…...

python项目部署代码汇总:目标检测类、人体姿态类

一、AI健身计数 1、图片视频检测 (cpu运行): 注:左上角为fps,左下角为次数统计。 1.哑铃弯举:12,14,16 详细环境安装教程:pyqt5AI健身CPU实时检测mediapipe 可视化界面…...

力扣每日一题92:反转链表||

题目描述&#xff1a; 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输…...

Vue+OpenLayers从入门到实战进阶案例汇总目录,兼容OpenLayers7和OpenLayers8

本篇作为《VueOpenLayers入门教程》和《VueOpenLayers实战进阶案例》所有文章的二合一汇总目录&#xff0c;方便查找。 本专栏源码是由OpenLayers结合Vue框架编写。 本专栏从Vue搭建脚手架到如何引入OpenLayers依赖的每一步详细新手教程&#xff0c;再到通过各种入门案例和综合…...

C#中使用LINQtoSQL管理SQL数据库之添加、修改和删除

目录 一、添加数据 二、修改数据 三、删除数据 四、添加、修改和删除的源码 五、生成效果 1.VS和SSMS原始记录 2.删除ID2和5的记录 3.添加记录ID2、5和8 4.修改ID3和ID4的记录 用LINQtoSQL管理SQL Server数据库时&#xff0c;主要有添加、修改和删除3种操作。 项目中创…...

飞致云及其旗下1Panel项目进入2023年第三季度最具成长性开源初创榜单

2023年10月26日&#xff0c;知名风险投资机构Runa Capital发布2023年第三季度ROSS指数&#xff08;Runa Open Source Startup Index&#xff09;。ROSS指数按季度汇总并公布在代码托管平台GitHub上年化增长率&#xff08;AGR&#xff09;排名前二十位的开源初创公司和开源项目。…...

Maven实战-私服搭建详细教程

Maven实战-私服搭建详细教程 1、为什么需要私服 首先我们为什么需要搭建Maven私服&#xff0c;一切技术来源于解决需求&#xff0c;因为我们在实际开发中&#xff0c;当我们研发出来一个 公共组件&#xff0c;为了能让别的业务开发组用上&#xff0c;则搭建一个远程仓库很有…...

uniapp-自定义表格,右边操作栏固定

uniapp-自定义表格&#xff0c;右边操作栏固定 在网上找了一些&#xff0c;没找到特别合适的&#xff0c;收集了一下其他人的思路&#xff0c;基本都是让左边可以滚动&#xff0c;右边定位&#xff0c;自己也尝试写了一下&#xff0c;有点样式上的小bug&#xff0c;还在尝试修…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...