ES 8.x新特性一览(完整版)

一、看点
在 2022 年 2 月 11 日,Elasticsearch(ES)正式发布了 8.0 版本,而截止到 2023 年 10 月,历经一年半时间,ES官方已经连续发布了多个版本,最新版本为 8.10.4。这一系列的更新引入了众多引人注目的新特性,按照功能模块和重要性进行整理,下面我们将介绍一些核心且引人瞩目的新功能。整体有以下看点:
- 向量检索
- 可以在集群中嵌入NLP模型
- ES适合做时序数据处理
- 开箱即用的安全配置功能
- 底层存储优化
- 更丰富的地图搜索功能
二、最引人注目的就是向量检索
在 8.0版本 中,提供新的kNN 搜索 API。这是一个里程碑的版本,在此之前,ES虽然支持向量检索,但是是以脚本的方式提供的。虽然此方法可以保证准确的结果,但它通常会导致搜索速度缓慢,并且无法很好地适应大型数据集。它的性能是极低的。在8.0中引入了 kNN search API | Elasticsearch Guide [8.0] | Elastic的技术预览版。使用dense_vector字段,k-nearest neighbor (kNN) search | Elasticsearch Guide [8.0] | Elastic可找到与查询向量最接近的k个向量(通过相似性度量来衡量)。kNN 通常用于为推荐引擎提供支持,并根据自然语言处理 (NLP) 算法对相关性进行排名。以前,Elasticsearch 仅支持使用script_score带有向量函数的查询进行精确的 kNN 搜索。虽然此方法可以保证准确的结果,但它通常会导致搜索速度缓慢,并且无法很好地适应大型数据集。作为索引速度较慢和准确性不完美的代价,新的 kNN 搜索 API 允许您以更快的速度对更大的数据集运行近似 kNN 搜索。
在 8.4版本中,把knn搜索加入到search API中,以支持 ANN 搜索。它由与旧 _knn_search端点相同的 Lucene ANN 功能提供支持。该knn选项可以与其他搜索功能(例如查询和聚合)结合使用。
在 8.7版本中,允许多个 KNN 搜索子句。某些向量搜索场景需要使用几个 kNN 子句进行相关性排名,例如,当基于多个字段进行排名时,每个字段都有自己的向量,或者当文档包含图像向量和文本向量时。用户可能希望获得基于所有这些 kNN 子句的组合的相关性排名。
在 8.8版本 中,将 Introducing Elastic Learned Sparse Encoder: Elastic’s AI model for semantic search — Elastic Search Labs 模型引入到我们的机器学习模型库中,您可以开箱即用。ELSER 通过启用语义搜索来提高搜索结果的相关性。这种搜索方法考虑单词的含义,而不是仅仅依赖字面术语。ELSER 是一种预训练的域外稀疏向量模型,无需对特定源数据进行微调。它从一开始就为您提供相关的搜索结果。并且在此版本中,还提升了KNN检索语法,加入了similarity参数,允许过滤给定相似性之外的最近邻结果。
在8.9版本中。text_embedding query_vector_builderkNN 搜索的扩展普遍可用。
在8.10版本中,启用跨段并行 knn 搜索,使得 knn 查询对由多个段组成的分片更快,来优化knn搜索的性能。
三、ES 开始支持 NLP模型能力
在8.0版本中可以上传在 Elasticsearch 之外训练的PyTorch模型,并在摄取时使用它们进行推理。第三方模型支持将现代自然语言处理 (NLP)和搜索用例引入 Elastic Stack,例如:
- Fill-mask
- Named entity recognition (NER)
- Text classification
- Text embedding
- Zero-shot classification
在8.2版本中,可以统计数据 NLP 推理速度。有三项新统计数据是:
- 每分钟峰值吞吐量
- 最后一分钟吞吐量
- 平均推理时间毫秒最后分钟
目的是表明推理当前是否满足要求,或者集群是否需要扩展以满足需求。最后一分钟的统计数据可以快速反馈以显示机器学习节点扩展的效果。
四、发布时间序列数据流(TSDS)功能
在 8.8 版本中,Elasticsearch 提供对时间序列数据流 (TSDS) 索引的支持。TSDS 索引是包含时间序列指标数据作为数据流一部分的索引。Elasticsearch 将传入文档路由到 TSDS 索引中,以便特定时间序列的所有文档都位于同一分片上,然后按时间序列和时间戳对分片进行排序。这种结构有几个优点:
1.同一时间序列的文档在分片上彼此相邻,因此在磁盘上彼此相邻存储,因此操作系统页面更加同质并且压缩效果更好,从而大幅降低 TCO。
2.时间序列的分析通常涉及比较每两个连续的文档(样本)、检查给定时间窗口中的最后一个文档等,当下一个文档可能位于任何分片上并且实际上位于任何索引上时,这是相当复杂的。按时间序列和时间戳排序可以改进分析,无论是在性能方面还是在我们添加新聚合的能力方面。
3.最后,作为指标数据时间序列索引生命周期管理的一部分,Elasticsearch 启用下采样操作。当对索引进行下采样时,Elasticsearch 会保留一个文档,其中包含时间序列中每个时间段的统计摘要。然后,支持的聚合可以在数据流上运行,并包括下采样索引和原始数据索引,而用户无需意识到这一点。还支持对下采样索引进行下采样,以达到更粗略的时间分辨率。
Time series data stream (TSDS) | Elasticsearch Guide [8.7] | Elastic是一项用于优化时间序列数据的 Elasticsearch 索引的功能。这涉及对索引进行排序以实现更好的压缩并使用合成 _source 来减小索引大小。因此,TSDS 指数明显小于包含相同数据的非时间序列指数。TSDS 对于管理大量时间序列数据特别有用。并且提供了采样优化算法,可减少 Elasticsearch 时间序列索引中存储的文档数量,从而缩小索引并改善查询延迟。这种优化是通过预先聚合时间序列索引来实现的,使用 time_series 索引模式来识别时间序列。下采样被配置为 ILM 中的一项操作,使其成为管理 Elasticsearch 中大量时间序列数据的有用工具。
五、开箱即用的安全配置功能
在8.0版本中,ES官方为我们提供了开箱即用的安全功能。在此之前,都要经过一系列复杂的操作,才能拥有安全能力。
在没有安全性的情况下运行 Elasticsearch 会使您的集群暴露给任何可以向 Elasticsearch 发送网络流量的人。在以前的版本中,您必须显式启用 Elasticsearch 安全功能,例如身份验证、授权和网络加密 (TLS)。从 Elasticsearch 8.0 开始, 首次启动 Elasticsearch 时Start the Elastic Stack with security enabled | Elasticsearch Guide [8.0] | Elastic
启动时,我们会生成注册令牌,您可以使用该令牌连接 Kibana 实例或在安全的 Elasticsearch 集群中注册其他节点,而无需生成安全证书或更新 YAML 配置文件。只需在启动新节点或 Kibana 实例时使用生成的注册令牌,Elastic Stack 就会为您处理所有安全配置。开箱即用,您将得到:
- 用户认证
- 用户授权
- 使用 TLS 进行加密的节点间通信
- Elasticsearch 和 Kibana 之间使用 TLS 进行加密通信
需要新的注册令牌吗?使用该 elasticsearch-create-enrollment-token | Elasticsearch Guide [8.0] | Elastic 工具为 Elasticsearch 节点和 Kibana 实例创建注册令牌。
六、底层存储优化与性能提升
1.keyword、match_only_text、 和text字段的存储节省
在8.0版本中更新了倒排索引(一种内部数据结构),以使用更节省空间的编码。这种变化将有利于keyword各个领域、 match_only_text各个领域,以及在较小程度上的text各个领域。在我们使用应用程序日志的基准测试中,这意味着字段索引大小message(映射为match_only_text)减少了 14.4%,磁盘占用空间总体减少了 3.5%。
2.更快地索引geo_point、geo_shape和范围字段
在8.0版本中优化了多维点的索引速度,多维点是用于geo_point、geo_shape和范围字段的内部数据结构。Lucene 级基准测试报告称,这些字段类型的索引速度提高了 10-15%。主要由这些字段组成的 Elasticsearch 索引和数据流可能会显着提高索引速度。
3.管道处理性能提升
在8.3版本中通过避免(深度)递归,改进了具有同步处理器的管道的管道执行逻辑。在我们模拟日志记录用例的夜间基准测试中,这导致摄取管道上花费的 CPU 时间减少了 10%,整体摄取速度提高了 3%。
4.filters/range/date_histogram aggs 性能提升
在8.4版本中,在没有子聚合时,对聚合进行提速。这非常常见,例如,Kibana 的发现选项卡顶部的直方图没有date_histogram任何子聚合。在我们的集会测试中,该特定聚合速度加快了约 85%,从 250 毫秒降至 30 毫秒。
5.使用显式“_id”改进了 get、mget 和索引的性能
在8.7中,将布隆过滤器的误报率_id从约 10% 降低至约 1%,从而减少了段中不存在术语时的 I/O 负载。这可以提高通过 检索文档时的性能_id,这种情况发生在执行 get 或 mget 请求时,或者发出_bulk提供显式 _id 的请求时。
6.Encode using 40, 48 and 56 bits per value
在8.8版本中,做了编码的提升。
使用编码如下: * 对于每个值采用 [33, 40] 位的值,使用每个值 40 位进行编码 * 对于每个值采用 [41, 48] 位的值,使用每个值 48 位进行编码 * 对于采用 [ 49, 56] 每个值位,使用每个值 56 位进行编码
这是对 ForUtils 使用的编码的改进,ForUtils 不对每个值超过 32 位的值应用任何压缩。
请注意,每个值的 40、48 和 56 位表示字节的精确倍数(每个值 5、6 和 7 个字节)。因此,我们总是使用比长值所需的 8 个字节少 3、2 或 1 个字节的值来写入值。
看看存储字节的节省,对于 128 个(长)值的块,我们通常会存储 128 x 8 字节 = 1024 字节,而现在我们有以下内容: * 每个值 40 位:写入 645 字节而不是 1024 字节,节省379 字节 (37%) * 每个值 48 位:写入 772 字节而不是 1024,节省 252 字节 (24%) * 每个值 56 位:写入 897 字节而不是 1024,节省 127 字节 (12%)
还将压缩应用于规格指标,假设每个值超过 32 位的压缩值对于浮点值效果很好,因为浮点值的表示方式(IEEE 754 格式)。
7.并发索引和搜索下更好的索引和搜索性能
在8.9版本中,提升并发索引和搜索的性能。当像匹配短语查询或术语查询这样的查询针对常量关键字字段时,我们可以跳过分片上的查询执行,其中查询被重写以不匹配任何文档。我们利用包括常量关键字字段的索引映射,并以这样的方式重写查询:如果常量关键字字段与索引映射中定义的值不匹配,我们将重写查询以匹配任何文档。这将导致分片级别请求在数据节点上执行查询之前立即返回,从而完全跳过分片。在这里,我们利用尽可能跳过分片的功能来避免不必要的分片刷新并改善查询延迟(通过不执行任何与搜索相关的 I/O)。避免这种不必要的分片刷新可以改善查询延迟,因为搜索线程不再需要等待不必要的分片刷新。不匹配查询条件的分片将保持搜索空闲状态,索引吞吐量不会受到刷新的负面影响。在引入此更改之前,查询命中多个分片,包括那些没有与搜索条件匹配的文档的分片(考虑使用索引模式或具有许多支持索引的数据流),可能会导致“分片刷新风暴”,从而增加查询延迟搜索线程等待所有分片刷新完成后才能启动和执行搜索操作。引入此更改后,搜索线程只需等待包括相关数据的分片刷新完成。请注意,分片预过滤器的执行以及重写发生的相应“可以匹配”阶段取决于所涉及的分片总数以及是否至少有一个分片返回非空结果(请参阅 pre_filter_shard_size设置为了解如何控制这种行为)。Elasticsearch 在所谓的“可以匹配”阶段对数据节点进行重写操作,利用这样一个事实:此时我们可以访问索引映射并提取有关常量关键字字段及其值的信息。这意味着我们仍然将搜索查询从协调器节点“扇出”到相关数据节点。在协调器节点上不可能基于索引映射重写查询,因为协调器节点缺少索引映射信息。
七、更高效的快照
8.5版本中,快照操作的开销已显着减少。快照现在以更高效的顺序运行,并且需要的网络流量比以前少得多。
八、更丰富的地图搜索功能
相关文章:

ES 8.x新特性一览(完整版)
一、看点 在 2022 年 2 月 11 日,Elasticsearch(ES)正式发布了 8.0 版本,而截止到 2023 年 10 月,历经一年半时间,ES官方已经连续发布了多个版本,最新版本为 8.10.4。这一系列的更新引入了众多引…...

生产实战shell,给安全部门提供日志
生产实战shell,给安全部门提供日志 #!/bin/bashbackup_dir"/data/rw_copy" log_dir"/data/weblogic_log/test/yingyong" nginx_log_dir"/data/nginx_log" apache_log_dir"/data/apache_log" weblogic_log_dir"/data/weblogic_lo…...

HarmonyOS数据管理与应用数据持久化(一)
一. 数据管理概述 功能介绍 数据管理为开发者提供数据存储、数据管理能力,比如联系人应用数据可以保存到数据库中,提供数据库的安全、可靠等管理机制。 数据存储:提供通用数据持久化能力,根据数据特点,分为用户首选项、…...

小型气象站在智慧农业高标准农田建设中的作用
了解“小型气象站在智慧农业高标准农田建设中的作用”,我们需要了解什么是小型气象站?什么是高标准农田? 所谓小型气象站是一种气象观测设备,根据应用领域不同可分为农业气象站,校园气象站,森林气象站&…...

kruskal求最小生成树
算法思路: 将所有边按照权值的大小进行升序排序,然后从小到大一一判断。 如果这个边与之前选择的所有边不会组成回路,就选择这条边分;反之,舍去。 直到具有 n 个顶点的连通网筛选出来 n-1 条边为止。 筛选出来的边…...

876. 链表的中间结点
876. 链表的中间结点 算法 快慢指针 & 题目特征 需要对链表中的节点进行遍历,并且需要根据节点之间的相对位置或者距离进行操作 题目链接:https://leetcode.cn/problems/middle-of-the-linked-list/ 算法 快慢指针 & 题目特征 需要对链表中…...

【机器学习】二、决策树
目录 一、决策树定义: 二、决策树特征选择 2.1 特征选择问题 2.2 信息增益 2.2.1 熵 2.2.2 信息增益 三、决策树的生成 3.1 ID3算法 3.1.1理论推导 3.1.2代码实现 3.2 C4.5 算法 3.2.1理论推导 3.2.2代码实现 四、决策树的剪枝 4.1 原理 4.2 算法思路:…...

低代码PAAS加速推进企业数字化转型
无论是“十四五”规划从国家层面提出的“加快数字化发展 建设数字中国”,还是后疫情时代企业自身的感受,数字化转型已成为必答题。当前 企业 业务场景化、线上趋势愈加明显,越来越多并发的数字化应用场景,而原有集中式架构扩展能力…...

时间复杂度为 O(nlogn) 的排序算法
归并排序 归并排序遵循 分治 的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后合并这些子问题的解来建立原问题的解,归并排序的步骤如下: 划分:分解待排序的 n 个元素…...

掌控你的Mac性能:System Dashboard Pro,一款专业的系统监视器
作为Mac用户,你是否曾经想要更好地了解你的电脑性能,以便优化其运行?是否想要实时监控系统状态,以便及时发现并解决问题?如果你有这样的需求,那么System Dashboard Pro就是你的不二之选。 System Dashboar…...

C++ Qt如何往Windows AppData目录写数据
在使用Qt开发客户端软件时,我们可以把程序相关信息保存到AppData目录, 下次启动时读取,就可以保存程序的状态,便于用户使用。 Windows AppData目录是Windows操作系统中的一个重要目录,主要用于存储应用程序的自定义设置、文件和数据。这个目录包含了许多与应用程序相关的配…...

xargs命令
xargs命令 xargs 命令是一个非常好用的 Linux 命令,它可以将管道或标准输入转换成命令行参数,并用这些参数来执行指定 的命令。默认情况下, xargs 命令会将输入按照空格、制表符、换行符等符号进行分隔,并将它们作为一组参数 传…...

【原创】java+swing+mysql无偿献血管理系统设计与实现
摘要: 无偿献血管理系统是为了实现无偿献血规范化、有序化、高效化的管理而设计的。本文主要介绍使用java语言开发一个基于C/S架构的无偿献血管理系统,提高无偿献血管理的工作效率。 功能分析: 系统主要提供给管理员、无偿献血人员&#x…...

C语言 Number 1 基本数据类型
数据类型的定义 c语言的数据分类基本类型整型浮点型float和double的精度和范围范围精度 枚举类型空类型派生类型派生的一般表达形式 注 c语言的数据分类 首先是针对C语言的数据类型做个整理 大致分为四个大类型 基本类型枚举类型空类型派生类型 那么根据以上四个大类型 我们…...

mac录屏快捷键指南,轻松录制屏幕内容!
“大家知道mac电脑有录屏快捷键吗,现在录屏不太方便,每次都花很多时间,要是有录屏快捷键,应该会快速很多,可是哪里都找不到,有人知道吗?帮帮我!” 苹果的mac电脑以其精美的设计和卓…...

精准测试是个错误
如果你已经了解了精准测试在行业的主流做法,你可以跳过相关内容。 行业里对于精准测试的定义 在网上流传着一些精准测试的定义(如果你对这些定义不感冒,可直接跳到我个人的定义): 自网易陈逸青(2020&#x…...

算法通关村第四关|黄金挑战|表达式问题
1.计算器问题 给定一个内容为表达式的字符串,计算结果。 class Solution {public int calculate(String s) {Deque<Integer> stack new ArrayDeque<Integer>();char preSign ;int num 0;int n s.length();for (int i 0; i < n; i) {if (Chara…...

Mac安装DBeaver
目录 一、DBeaver Mac版软件简介 二、下载地址 三、DBeaver连接失败报错 3.1 问题描述 3.2 连接失败问题解决 一、DBeaver Mac版软件简介 DBeaver Mac版是一款专门为开发人员和数据库管理员设计的免费开源通用数据库工具。软件的易用性是它的宗旨,是经过精心设计…...

C++ 类 根据成员变量的指针获取类对象的指针
一.宏定义 实现方式有多种,原理是相同的 方式1: #define get_class_ptr(memberPtr,classType,memberName) \ ((classType*)((char*)(memberPtr)-(unsigned long)((ULONG_PTR)&((classType*)0)->member))) 方式2: #define get_cl…...

图论08-图的建模-状态的表达与理解 - 倒水问题为例
文章目录 状态的表达例题1题解1 终止条件:有一个数位为42 状态的改变:a表示十位数,b表示个位数3 其他设置 例题2 力扣773 滑动谜题JavaC 状态的表达 例题1 从初始的(x,y)状态,到最后变成(4,&am…...

sqlserver字符串拼接
本文主要介绍了sqlserver字符串拼接的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值。 1. 概 在SQL语句中经常需要进行字符串拼接,以sqlserver,oracle,mysql三种数据库为例&#…...

MySQL-----事务
事务的概念 事务是一种机制,一个操作序列。包含了一组数据库的操作命令,所有的命令都是一个整体,向系统提交或者撤销的操作,要么都执行,要么都不执行。 是一个不可分割的单位 事务的ACID特点 ACID,是指在可…...

hive的安装配置笔记
1.上传hive安装包 2.解压 3.配置Hive(在一台机器上即可) mv hive-env.sh.template hive-env.sh 4.运行hive 发现内置默认的metastore存在问题(1.换执行路径后,原来的表不存在了。2.只能有一个用户访问同一个表) 5.配置mysql的meta…...

lamba stream处理集合
lamba stream处理集合 带拼接多字段分组List< Object> 转 Map<String,List< Object>> Map<String, List<ProfitAndLossMapping>> collect plMappingList.stream() .collect(Collectors.groupingBy(m -> m.getLosType() ":" m.…...

操作系统 day04(系统调用)
什么是系统调用 库函数和系统调用的区别 应用程序可以通过汇编语言直接进行系统调用,也可以使用高级语言的库函数来进行系统调用。而有的库函数涉及系统调用,如“创建一个新文件”函数,有的不涉及,如“取绝对值”函数 什么功能要…...

【深度学习】pytorch——线性回归
笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 深度学习专栏链接: http://t.csdnimg.cn/dscW7 pytorch——线性回归 线性回归简介公式说明完整代码代码解释 线性回归简介 线性回归是一种用于建立特征和目标变量之间线性关系的统计学习方法。它假设…...

golang工程——中间件redis,单节点集群部署
单节点redis集群部署 部署redis 6.2.7版本 没资源,就用一台机子部 解压安装包 tar zxf redis-6.2.7.tar.gzcd redis-6.2.7编译安装 mkdir -p /var/local/redis-6.2.7/{data,conf,logs,pid}data:数据目录 conf:配置文件目录 logs…...

Lua基础
table 基本原理: table是一种特殊的容器,可以向数组一样按照索引存取,也能按照键值对存取。 local mytable {1,2,3} --相当于数组 local mytable {[1]1,[2]2,[3]3} --和上面等价 local mytable {1,2,3,[3] 4} --隐式赋值会覆盖掉显式赋…...

微信小程序之开发工具介绍
一、微信小程序开发工具下载 微信小程序开发工具下载可以参考这篇博客《微信小程序开发者工具下载-CSDN博客》 二、开发工具组成部分 如下图所示,开发者工具主要由菜单栏、工具栏、模拟器、编辑器和调试器 5 个部分组成。。 1、菜单栏 菜单栏中主要包括项目、文…...
【AUTOSAR】【以太网】DoIp
AUTOSAR专栏——总目录_嵌入式知行合一的博客-CSDN博客文章浏览阅读217次。本文主要汇总该专栏文章,以方便各位读者阅读。https://xianfan.blog.csdn.net/article/details/132072415 目录 一、概述 二、功能描述 2.1 Do...