当前位置: 首页 > news >正文

回归预测 | Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测

Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测

目录

    • Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab;
2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。
3.鹈鹕算法POA优化的参数为:CNN的批处理大小、学习率、正则化系数,能够避免人工选取参数的盲目性,有效提高其预测精度。
4.main.m为主程序,其他为函数文件,无需运行,data为数据,多输入单输出,数据回归预测,输入7个特征,输出1个变量,直接替换Excel数据即可用!注释清晰,适合新手小白~

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测
%%% Designed and Developed by Pavel Trojovský and Mohammad Dehghani %%%function[Best_score,Best_pos,POA_curve]=POA(SearchAgents,Max_iterations,lowerbound,upperbound,dimension,fitness)lowerbound=ones(1,dimension).*(lowerbound);                              % Lower limit for variables
upperbound=ones(1,dimension).*(upperbound);                              % Upper limit for variables%% INITIALIZATION
for i=1:dimensionX(:,i) = lowerbound(i)+rand(SearchAgents,1).*(upperbound(i) - lowerbound(i));                          % Initial population
endfor i =1:SearchAgentsL=X(i,:);fit(i)=fitness(L);
end
%%for t=1:Max_iterationst%% update the best condidate solution[best , location]=min(fit);if t==1Xbest=X(location,:);                                           % Optimal locationfbest=best;                                           % The optimization objective functionelseif best<fbestfbest=best;Xbest=X(location,:);end%% UPDATE location of foodX_FOOD=[];

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

回归预测 | Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测

Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测 目录 Matlab实现POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.POA-CNN-SVM鹈鹕算法优化卷积神经网络-支持向量机的多变量回归…...

React 学习笔记

React React.js是一个开源的JavaScript库&#xff0c;由Facebook于2013年开发&#xff0c;用于构建用户界面或UI组件。它主要用于构建单页应用程序或SPA&#xff0c;并且可以在Web和移动应用程序中使用。React.js使用虚拟DOM来提高性能&#xff0c;并使用组件化的方式来实现代…...

单链表的查找(按值查找、按位查找)(数据结构与算法)

什么是单链表&#xff1f; 单链表是一种常见的链式数据结构&#xff0c;用于存储和操作数据元素的集合。它由一系列的节点组成&#xff0c;每个节点包含两个部分&#xff1a;数据域和指针域。 单链表的每个节点包含了存储数据的数据域&#xff0c;以及指向下一个节点的指针域。…...

Qt 6.6 发布

@TOC 前言 Qt 6.6 发布于2023年10月10日 https://www.qt.io/blog/qt-6.6-releasedQt 6.6 系列源码下载 https://download.qt.io/official_releases/qt/6.6/Qt 在线安装器下载 https://download.qt.io/official_releases/online_installers/国内镜像下载 在线安装器(维护工具)…...

unity工程

1首先我们来熟悉一下Unity每个文件夹的作用 1.assets&#xff1a;工程资源文件夹 2.library&#xff1a;库文件夹 3.logs&#xff1a;日志文件夹 4.obj&#xff1a;编译产生中间文件 5.packages&#xff1a;包配置信息 6&#xff1a;projectsettings&#xff1a;工程设置…...

蓝桥杯官网练习题(地址转换)

题目描述 Excel 是最常用的办公软件。每个单元格都有唯一的地址表示。比如&#xff1a;第 12 行第 4 列表示为&#xff1a;"D12"&#xff0c;第 5 行第 255 列表示为"IU5"。 事实上&#xff0c;Excel 提供了两种地址表示方法&#xff0c;还有一种表示法叫…...

力扣labuladong——一刷day19

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣303. 区域和检索 - 数组不可变二、力扣304. 二维区域和检索 - 矩阵不可变 前言 巧用前缀和 前缀和技巧适用于快速、频繁地计算一个索引区间内的元素之…...

MyBatis无法读取XML中的Method的乌龙事件

事件背景 同事反馈&#xff0c;相同的jar包&#xff0c;在多人本地的电脑、多台服务器中&#xff0c;都是可以正常启动的&#xff0c;只有在其中一台服务器&#xff0c;简称它为A&#xff0c;无法启动&#xff0c;因为启动后的初始化操作中有一个调用mybatis方法的操作&#x…...

LeetCode----76. 最小覆盖子串

 题目 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。 如果 s 中存在这样的子串,我们保…...

app逆向入门之车智赢

声明&#xff1a;本文仅限学习交流使用&#xff0c;禁止用于非法用途、商业活动等。否则后果自负。如有侵权&#xff0c;请告知删除&#xff0c;谢谢&#xff01;本教程也没有专门针对某个网站而编写&#xff0c;单纯的技术研究 目录 案例分析技术依赖参数分析效果展示代码分享…...

LeetCode——数组 移除元素(Java)

移除元素 简介[简单] 27. 移除元素[简单] 26. 删除有序数组中的重复项[简单] 283. 移动零[简单] 844. 比较含退格的字符串[简单] 977. 有序数组的平方 简介 记录一下自己刷题的历程以及代码。写题过程中参考了 代码随想录。会附上一些个人的思路&#xff0c;如果有错误&#x…...

enum和Collection.stream()你这样用过么

最近在做一个数据图表展示的功能&#xff0c;显示订单近七天或者近半月的数量和金额。可以理解成下图所示的样子&#xff1a; 我是用枚举和集合的stream方法实现的数据初始化和组装&#xff0c;枚举用来动态初始化时间范围&#xff0c;集合的stream方法来将初始化的数据转换成…...

unittest与pytest的区别

Unittest vs Pytest 主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面比较unittest和pytest的区别: 用例编写规则 用例前置与后置条件 断言 测试报告 失败重跑机制 参数化 用例分类执行 如果不好看&#xff0c;可以看下面表格&…...

YOLOv7优化策略:IOU系列篇 | 引入MPDIoU,WIoU,SIoU,EIoU,α-IoU等创新

💡💡💡本文独家改进:MPDIoU,WIoU,SIoU,EIoU,α-IoU等二次创新,总有一种适合你的数据集 MPDIoU,WIoU,SIoU,EIoU,α-IoU | 亲测在多个数据集能够实现大幅涨点 收录: YOLOv7高阶自研专栏介绍: http://t.csdnimg.cn/tYI0c ✨✨✨前沿最新计算机顶会复现 …...

SQL Server2000mdf升级SQL Server2005数据库还原

SQL Server2000数据库还原sqlserver 2000mdf升级 sqlserver 2008数据库还原SQL Server2005数据库脚本 sqlserver数据库低版本升级成高版本 sqlserver数据库版本升级 数据库版本还原 如果本机安装了sqlserver2012或者sqlserver2019等高版本 怎么样才能运行sqlserver2000的数据库…...

webSocket推送太快导致前端渲染卡顿问题优化

优化思路&#xff1a; 把webSocket接收到的数据用一个数组存起来&#xff0c;达到一定长度再统一渲染&#xff0c;可根据推送数据的速度适当调解数组长度限制&#xff0c;如果一段时间内改数组长度打不要渲染条件&#xff0c;就用定时器之间渲染 data() {return {tempDataWsLi…...

(Java)泛型总结

泛型类 public class Student<E> {private E a;public Student(E a){this.aa;}public void show(){System.out.println(a);} } 泛型方法 public <E> void show(E a){System.out.println(a);} 泛型接口 public interface Inter <T>{void show(T a); } 类…...

C++ Package继承层次,采用继承实现快递包裹的分类计价(分为空运2日达、陆运3日达)。

一、问题描述&#xff1a; Package继承层次&#xff0c;采用继承实现快递包裹的分类计价&#xff08;分为空运2日达、陆运3日达&#xff09;。自定义一个或多个快递公司&#xff0c;自定义计价方法&#xff0c;设计合适、合理的界面文本提示&#xff0c;以广东省内某市为起点&…...

中文大语言模型汇总

推荐一篇非常棒的github&#xff1a;Awesome-Chinese-LLM 另附语言模型排行榜&#xff1a;FastChat 里面总结了几乎所有目前主流的中文大语言模型。在此记录一下&#xff0c;方便以后慢慢学习。...

GEE:GEE中实现简单计算器

作者&#xff1a;CSDN _养乐多_ 本文记录了在 Google Earth Engine&#xff08;GEE&#xff09;上实现简单计算器的代码。 APP链接&#xff1a;https://949384116.users.earthengine.app/view/simplecalculator 文章目录 一、完整代码二、代码链接 一、完整代码 // 定义初始…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...