当前位置: 首页 > news >正文

线性代数 第五章 特征值与特征向量

一、特征值定义

A\alpha =\lambda \alpha ,a\neq 0

二、特征值求法

  • 定义法;
  • \left | \lambda E-A \right |=0
  • 相似。

三、特征向量求法

  • 定义法;
  • 基础解系法;
  • (\lambda E-A)x=0
  • 相似。

四、特征值性质

  1. 不同特征值的特征向量线性无关
  2. k重特征值至多有k个线性无关的特征向量
  3. \left | A \right |=\prod \lambda _i,\sum a_{ii}=\sum \lambda _i

五、相似的定义

P^{-1}AP=B,则A和B相似。

六、相似的性质(必要条件)

  • r(A)=r(B)
  • \left | A \right |=\left | B \right |
  • \left | \lambda E-A \right |=\left | \lambda E-B \right |
  • \sum a_{ii}=\sum b_{ii}

七、可对角化

7.1 充要条件
  • A有n个线性无关的特征向量
  • 如果λ是k重特征值,那么λ必有k个线性无关的特征向量
  • r(\lambda _i E-A)=n-n_i,\lambda _in_i重特征值
7.2 充分条件
  • A有n个不同的特征值
  • A是实对称矩阵

八、实对称矩阵隐含的信息

  • 必与对角矩阵相似
  • 可用正交矩阵对角化,且对角阵上的元素即为特征值
  • 不同特征值的特征向量必正交
  • 特征值必是实数,特征向量必是实向量
  • k重特征值必有k个线性无关的特征向量(r(\lambda E-A)=n-k
  • n阶实对称矩阵A有n个特征值的话(含重根),若r(A)<n,则有n-r(A)个零特征值
  • 秩等于非零特征值的个数

P_1^{-1}AP_1=B,P_2^{-1}BP_2=C\Rightarrow P^{-1}AP=C,P=P_1P_2

AkA+EA+kEA^{-1}A^*A^nP^{-1}AP
\lambdak\lambda +1\lambda +k\frac{1}{\lambda }\frac{\left | A \right |}{\lambda }\lambda ^n\lambda
\alpha\alpha\alpha\alpha\alpha\alphaP^{-1}\alpha

相关文章:

线性代数 第五章 特征值与特征向量

一、特征值定义 二、特征值求法 定义法&#xff1b;&#xff1b;相似。 三、特征向量求法 定义法&#xff1b;基础解系法&#xff1b;&#xff1b;相似。 四、特征值性质 不同特征值的特征向量线性无关k重特征值至多有k个线性无关的特征向量 五、相似的定义 若&#xff…...

Python嵌入式数据库 / 轻量级数据库 / 小型数据库介绍(SQLite、Pandas DataFrame、TinyDB)(python数据库)

文章目录 Python嵌入式数据库/轻量级数据库介绍什么是嵌入式数据库/轻量级数据库&#xff1f;SQLitePandasTinyDB总结 Python嵌入式数据库/轻量级数据库介绍 在构建应用程序时&#xff0c;数据存储是必不可少的一部分。传统的方式是使用如MySQL、PostgreSQL这样的重量级数据库…...

USB PD v1.0快速充电通信原理

1 原理 本篇文章讲的快速充电是指USB论坛所发布的USB Power Delivery快速充电规范&#xff08;通过VBUS直流电平上耦合FSK信号来请求充电器调整输出电压和电流的过程&#xff09;&#xff0c;不同于本人发布的另一篇文章所讲的高通Quick Charger 2.0规范&#xff0c;因为高通QC…...

【华为】路由器以PPPoE拨号接入广域网

组网需求 用户希望以PPPoE拨号方式接入广域网&#xff0c;如图1所示&#xff0c;Router作为PPPoE客户端&#xff0c;得到PPPoE服务器的认证后获得IP地址&#xff0c;实现用户接入互联网的需求。内网网关地址&#xff08;即VLANIF1接口的IP地址&#xff09;为10.137.32.1/24。 …...

Linux内核分析(一)--内核架构和子系统

目录 一、引言 二、内核架构 ------>2.1、kernel源码获取 ------>2.2、cpuinfo ------>2.3、内核体系结构 ------>2.4、内核主要组件 三、内核源码及子系统 ------>3.1、整体结构与子系统 ------>3.2、cpuinfo ------>3.3、整体结构与子系统 -…...

【PyQt学习篇 · ⑨】:QWidget -控件交互

文章目录 是否可用是否显示/隐藏是否编辑是否为活跃窗口关闭综合案例信息提示状态提示工具提示“这是什么”提示 焦点控制单个控件角度父控件角度 是否可用 setEnabled(bool)&#xff1a;该函数用于设置QWidget控件的可用性&#xff0c;参数bool为True表示该控件为可用状态&…...

新版本IntelliJ IDEA(如2023)中运行Spring Boot找不到VM options进行端口的修改的问题解决

问题 如下图找不到VM options。 解决 进行如下操作即可。...

Swift语言配合HTTP写的一个爬虫程序

下段代码使用Embassy库编写一个Swift爬虫程序来爬取jshk的内容。我会使用proxy_host为duoip&#xff0c;proxy_port为8000的爬虫IP服务器。 使用Embassy库编写一个Swift爬虫程序可以实现从网页上抓取数据的功能。下面是一个简单的步骤&#xff1a; 1、首先&#xff0c;需要在X…...

【lvgl】linux开发板搭建环境

前言 本章介绍如何在linux开发板准备好了fb0的情况下移植lvgl。 抓取源码 git clone https://github.com/lvgl/lvgl.git git clone https://github.com/lvgl/lv_drivers.git git clone https://github.com/lvgl/lv_demos.git git clone https://github.com/lvgl/lv_port_lin…...

C之(10)CMocka-单元测试框架使用

CMocka基础使用 Author&#xff1a;Once Day Date&#xff1a;2023年6月15日 参考文档&#xff1a; GoogleTest User’s Guide | GoogleTest嵌入式自动化单元测试(2)-Cmocka - 知乎 (zhihu.com)使用 cmocka 进行单元测试 | 前尘逐梦 (qianchenzhumeng.github.io)cmocka - un…...

如何在idea中使用maven搭建tomcat环境

目录 一、创建maven项目 二、完善代码结构 三、引入依赖和插件 四、启动tomcat&#xff0c;运行项目 &#xff08;1&#xff09;点击添加配置 &#xff08;2&#xff09;点击左上角的加号&#xff0c;选择maven &#xff08;3&#xff09;输入运行命令 五、验证 一、创建…...

单点登录

单点登录&#xff08;Single Sign-On&#xff0c;简称SSO&#xff09;是一种可以让用户在多个应用程序和网站中使用同一组登录凭证的技术&#xff0c;即用户只需通过一次身份验证&#xff0c;就可以访问多个应用和网站。以下是单点登录的相关知识点&#xff1a; 1. 身份验证机…...

大数据(十):数据可视化(二)

专栏介绍 结合自身经验和内部资料总结的Python教程&#xff0c;每天3-5章&#xff0c;最短1个月就能全方位的完成Python的学习并进行实战开发&#xff0c;学完了定能成为大佬&#xff01;加油吧&#xff01;卷起来&#xff01; 全部文章请访问专栏&#xff1a;《Python全栈教…...

pytorch+LSTM实现使用单参数预测,以及多参数预测(代码注释版)

开发前准备&#xff1a; 环境管理&#xff1a;Anaconda python: 3.8 显卡&#xff1a;NVIDIA3060 pytorch: 到官网选择conda版本&#xff0c;使用的是CUDA11.8 编译器&#xff1a; PyCharm 简述&#xff1a; 本次使用seaborn库中的flights数据集来做试验&#xff0c;我们通过…...

腾讯云3年/5年特惠云服务器购买入口及攻略

腾讯云是腾讯旗下云计算品牌&#xff0c;为了吸引用户经常推出各种优惠活动&#xff0c;最吸引用户的还是特惠云服务器&#xff0c;下面给大家分享腾讯云3年/5年时长特惠服务器购买入口及教程&#xff01; 购买入口&#xff1a;传送门>>> 购买攻略&#xff1a; 进入…...

【Linux】jdk Tomcat MySql的安装及Linux后端接口部署

一&#xff0c;jdk安装 1.1 上传安装包到服务器 打开MobaXterm通过Linux地址连接到Linux并登入Linux&#xff0c;再将主机中的配置文件复制到MobaXterm 使用命令查看&#xff1a;ll 1.2 解压对应的安装包 解压jdk 解压命令&#xff1a;tar -xvf jdk 加键盘中Tab键即可…...

天空卫士为集度智能汽车系上“安全带”

10月27日&#xff0c;集度汽车在北京正式发布了旗下首款量产车型——极越 01 SUV。极越 01 SUV 是一款集科技、智能、美学于一身的纯电动中大型SUV&#xff0c;号称全球首款“AI 汽车机器人”。作为集度的合作伙伴&#xff0c;天空卫士第一时间送上祝福&#xff0c;祝愿极越大卖…...

vue el-table-column 修改一整列的背景颜色

目录 修改表头以及一整列数据的背景颜色&#xff0c;效果如下&#xff1a; 总结 修改表头以及一整列数据的背景颜色&#xff0c;效果如下&#xff1a; 修改表头背景颜色&#xff1a;在el-table绑定header-cell-style 修改一整列的数据背景颜色&#xff1a;在el-table绑定:cel…...

docker 安装 minio (单体架构)

文字归档&#xff1a;https://www.yuque.com/u27599042/coding_star/qcsmgom7basm6y64 查询 minio 镜像 docker search minio拉取镜像 docker pull minio/minio创建启动 minio 容器 用户名长度至少为 3&#xff0c;密码长度至少为 8 docker run \ -p 9000:9000 \ -p 9090:909…...

docker搭建kafka

1.拉取zookeeper镜像 注意&#xff1a;云服务器需要设置安全策略放行2181与9092端口&#xff0c;否则访问失败 #默认拉取最新版本镜像 docker pull wurstmeister/zookeeper#检查镜像是否拉取成功 docker images | grep zookeeper2.通过docker运行zookeeper #docker容器单机启…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

【题解-洛谷】P10480 可达性统计

题目&#xff1a;P10480 可达性统计 题目描述 给定一张 N N N 个点 M M M 条边的有向无环图&#xff0c;分别统计从每个点出发能够到达的点的数量。 输入格式 第一行两个整数 N , M N,M N,M&#xff0c;接下来 M M M 行每行两个整数 x , y x,y x,y&#xff0c;表示从 …...

GB/T 43887-2024 核级柔性石墨板材检测

核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标&#xff1a; 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...