当前位置: 首页 > news >正文

数据挖掘题目:设ε= 2倍的格网间距,MinPts = 6, 采用基于1-范数距离的DBSCAN算法对下图中的实心格网点进行聚类,并给出聚类结果(代码解答)

问题

在这里插入图片描述

代码

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import DBSCAN
#pip install matplotlib
#pip install numpy
#pip install scikit-learn
# 实心格网点的坐标
solid_points = np.array([[1, 1], [2, 1],[3, 1], [1, 2], [2, 2], [3, 2],[1, 3],[3, 3], [1, 4],[3, 4], [1, 5], [2, 5], [3, 9], [6, 4],[7, 6], [7, 7], [7, 8], [7, 9], [8, 6], [9, 7], [9, 8], [9, 9] ,[10, 6],[11, 6],[11, 7],[11, 8],[11, 9]])# 执行DBSCAN聚类
'''
对于1范数(曼哈顿距离),将metric参数的值设置为'manhattan':
dbscan = DBSCAN(eps=2, min_samples=6, metric='manhattan')
对于2范数(欧几里德距离),将metric参数的值设置为'euclidean':
dbscan = DBSCAN(eps=2, min_samples=6, metric='euclidean')
对于无穷范数,将metric参数的值设置为'chebyshev':
dbscan = DBSCAN(eps=2, min_samples=6, metric='chebyshev')
'''
dbscan = DBSCAN(eps=2, min_samples=6, metric='manhattan')
labels = dbscan.fit_predict(solid_points)# 获取核心点的索引
core_samples_mask = np.zeros_like(labels, dtype=bool)
core_samples_mask[dbscan.core_sample_indices_] = True
core_indices = np.where(core_samples_mask)[0]# 获取边缘点的索引
border_indices = np.setdiff1d(np.where(labels != -1)[0], core_indices)# 获取孤立点的索引
outlier_indices = np.where(labels == -1)[0]# 映射字典
mapping  = {1: 'A',2: 'B',3: 'C',4: 'D',5: 'E',6: 'F',7: 'G',8: 'H',9: 'I',10: 'J',11: 'K'
}# 构建簇与点的映射关系
clusters = {}
for i, label in enumerate(labels):clusters.setdefault(label, {'core': [], 'border': []})if label != -1:if i in core_indices:clusters[label]['core'].append(solid_points[i])else:clusters[label]['border'].append(solid_points[i])# 打印各个簇的核心点和边界点
for label, cluster in clusters.items():core_points = [f"{mapping[point[0]]}{point[1]}" for point in cluster['core']]border_points = [f"{mapping[point[0]]}{point[1]}" for point in cluster['border']]if label!=-1:print(f"簇 {label+1} 的核心点为:" + ", ".join(core_points))print(f"簇 {label+1} 的边界点为:" + ", ".join(border_points))print()# 打印孤立点
outliers = [f"{mapping[point[0]]}{point[1]}" for point in solid_points[outlier_indices]]
print("孤立点为:" + ", ".join(outliers))
print()# 绘制实心格网点和空心格网点的聚类结果
# 先获取当前的坐标轴
ax = plt.gca()
# 将y轴方向进行翻转
ax.invert_yaxis()
# 绘制散点图
plt.scatter(solid_points[:, 0], solid_points[:, 1], c=labels)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('DBSCAN Clustering')
plt.show()

结果

在这里插入图片描述
在这里插入图片描述

相关文章:

数据挖掘题目:设ε= 2倍的格网间距,MinPts = 6, 采用基于1-范数距离的DBSCAN算法对下图中的实心格网点进行聚类,并给出聚类结果(代码解答)

问题 代码 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import DBSCAN #pip install matplotlib #pip install numpy #pip install scikit-learn # 实心格网点的坐标 solid_points np.array([[1, 1], [2, 1],[3, 1], [1, 2], [2, 2], [3, 2],[…...

STM32HAL-完全解耦面向对象思维的架构-时间轮片法使用(timeslice)

目录 概述 一、开发环境 二、STM32CubeMx配置 三、编码 四、运行结果 五、代码解释 六、总结 概述 timeslice是一个时间片轮询框架,完全解耦的时间片轮询框架,非常适合裸机单片机引用。接下来将该框架移植到stm32单片机运行,单片机…...

C++ 程序员入门需要多久,怎样才能学好?

我们都知道,C是所有语言的基础 !记得在大学毕业之后,做了C的后端开发当然还有一些嵌入式的相关的工作,到现在换工作,工作机会依然那么多,到了一定的阶段,我想你不是在找工作,而是工作…...

SpringBoot项目打war包部署到tomcat访问路径去掉项目名

方法一:手动修改包名 1.先将Tomcat webapp目录下文件全部删除 2.将war包文件放在webapps文件夹下 2.运行tomcat,war文件自动解压成文件夹 3.关闭tomcat,,将步骤2解压的文件夹直接改名为ROOT 4.重新运行tomcat,即可。 5…...

58同城面试

一、Java八股 1、ThreadLocal的底层原理是什么? ThreadLocal 在Java中用于提供线程局部变量,这些变量在每个线程中都有独立的副本,互不干扰。其底层原理可以简要描述如下: 数据存储: 每个线程中都有一个 ThreadLocalMap 的实例&…...

【数据结构】归并排序 的递归实现与非递归实现

归并排序 前言一、归并排序递归实现(1)归并排序的核心思路(2)归并排序实现的核心步骤(3)归并排序码源详解(4)归并排序效率分析1)时间复杂度 O(N*logN&#xf…...

Go的命令行工具开发:使用Cobra库

今天我们将深入探讨如何使用Go语言和Cobra库来开发命令行工具。 命令行工具在软件开发中有着广泛的应用,它们快速、高效,且易于自动化。 Go语言因其简洁、高效而被广泛用于命令行工具的开发。Cobra库则是Go中用于构建命令行工具的重要库之一。 为什么选…...

坚持#第420天~阿里云轻量服务器内存受AliYunDunMonito影响占用解决方法

阿里云轻量服务器内存受AliYunDunMonito影响占用解决方法,亲测有效: Mobax好卡啊,那就直接在阿里云后台操作即可,阿里云后台也可以上传文件。 Navicat mysql好卡啊,那就直接在阿里云后台最上面帮助的右边有个数据库&…...

时间序列聚类的直观方法

一、介绍 我们将使用轮廓分数和一些距离度量来执行时间序列聚类实验,同时利用直观的可视化,让我们看看下面的时间序列: 这些可以被视为具有正弦、余弦、方波和锯齿波的四种不同的周期性时间序列 如果我们添加随机噪声和距原点的距离来沿 y 轴…...

vue3的reactive源码解析

reactive源码解析 总结一句: reactive是个函数。reactive函数返回了一个createReactiveObject函数,createReactiveObject又返回了一个“经new Proxy实例化”的对象。 详细介绍: 我们使用时传给reactive函数一个对象类型target,reactive又将target传给cr…...

【ElasticSearch系列-04】ElasticSearch的聚合查询操作

ElasticSearch系列整体栏目 内容链接地址【一】ElasticSearch下载和安装https://zhenghuisheng.blog.csdn.net/article/details/129260827【二】ElasticSearch概念和基本操作https://blog.csdn.net/zhenghuishengq/article/details/134121631【三】ElasticSearch的高级查询Quer…...

Redisson初始

最近的自己,一直都在做些老年的技术,没有啥升级,自己也快麻木了,自己该怎么说,那必须行动起来啊!~来来,我们一起增长自己的内功 分布式锁的最强实现: Redisson 1.概念 在介绍之前,我们要知道这个Redisson是啥? 难道就是Redis的son?(我第一次就这么认为的哈哈!) 事实也的确如…...

【华为OD题库-018】AI面板识别-Java

题目 Al识别到面板上有N(1<N≤100)个指示灯&#xff0c;灯大小一样&#xff0c;任意两个之间无重叠。由于AI识别误差&#xff0c;每次识别到的指示灯位置可能有差异&#xff0c;以4个坐标值描述Al识别的指示灯的大小和位置(左上角x1,y1&#xff0c;右下角x2.y2)。请输出先行…...

[概述] 点云滤波器

拓扑结构 点云是一种三维数据&#xff0c;有几种方法可以描述其空间结构&#xff0c;以利于展开搜索 https://blog.csdn.net/weixin_45824067/article/details/131317939 KD树 头文件&#xff1a;pcl/kdtree/kdtree_flann.h 函数&#xff1a;pcl::KdTreeFLANN 作用&#xff1a…...

[笔记] 汉字判断

参考博客&#xff1a;如果判断一个字符是西文字符还是中文字符 结论&#xff1a; 汉字转数字后&#xff0c;会占两位字符位&#xff0c;两位都是负数。 参考下面代码 输入&#xff1a;你 输出&#xff1a;01 #include<bits/stdc.h> using namespace std; int main() {cha…...

Android开发笔记(三)—Activity篇

活动组件Activity 启动和结束生命周期启动模式信息传递Intent显式Intent隐式Intent 向下一个Activity发送数据向上一个Activity返回数据 附加信息利用资源文件配置字符串利用元数据传递配置信息给应用页面注册快捷方式 启动和结束 &#xff08;1&#xff09;从当前页面跳到新页…...

nodejs+vue+python+php在线购票系统的设计与实现-毕业设计

伴随着信息时代的到来&#xff0c;以及不断发展起来的微电子技术&#xff0c;这些都为在线购票带来了很好的发展条件。同时&#xff0c;在线购票的范围不断增大&#xff0c;这就需要有一种既能使用又能使用的、便于使用的、便于使用的系统来对其进行管理。在目前这种大环境下&a…...

基于Taro + React 实现微信小程序半圆滑块组件、半圆进度条、弧形进度条、半圆滑行轨道(附源码)

效果&#xff1a; 功能点&#xff1a; 1、四个档位 2、可点击加减切换档位 3、可以点击区域切换档位 4、可以滑动切换档位 目的&#xff1a; 给大家提供一些实现思路&#xff0c;找了一圈&#xff0c;一些文章基本不能直接用&#xff0c;错漏百出&#xff0c;代码还藏着掖…...

城市内涝解决方案:实时监测,提前预警,让城市更安全

城市内涝积水问题是指城市地区在短时间内遭遇强降雨后&#xff0c;地面积水过多&#xff0c;导致城市交通堵塞、居民生活不便、财产损失等问题。近年来&#xff0c;随着全球气候变化和城市化进程的加速&#xff0c;城市内涝积水问题越来越突出&#xff0c;成为城市发展中的一大…...

编译正点原子LINUXB报错make: arm-linux-gnueabihf-gcc:命令未找到

编译正点原子LINUX报错make: arm-linux-gnueabihf-gcc&#xff1a;命令未找到 1.报错内容2.解决办法3./bin/sh: 1: lzop: not found4.编译成功 1.报错内容 make: arm-linux-gnueabihf-gcc&#xff1a;命令未找到CHK include/config/kernel.releaseCHK include/generat…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...