动手学深度学习:1.线性回归从0开始实现
动手学深度学习:1.线性回归从0开始实现
- 1.手动构造数据集
- 2.小批量读取数据集
- 3.初始化模型参数
- 4.定义模型和损失函数
- 5.小批量随机梯度下降更新
- 6.训练
- 完整代码
1.手动构造数据集
根据带有噪声的线性模型构造一个人造数据集,任务是使用这个有限样本的数据集来恢复这个模型的参数。
我们使用线性模型参数 w = [ 2 , − 3.4 ] T w = [2,−3.4]^T w=[2,−3.4]T , b = 4.2 b = 4.2 b=4.2 和噪声项 ϵ \epsilon ϵ 生成数据集及其标签:
y = X w + b + ϵ y = Xw + b + \epsilon y=Xw+b+ϵ
def synthetic_data(w, b, num_examples):"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape) # 加上均值为0,标准差为0.01的噪声return X, y.reshape((-1, 1))true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
features
中的每一行都包含一个二维数据样本, labels
中的每一行都包含一维标签值(一个标量)
print('features:', features[0],'\nlabel:', labels[0])
'''
features: tensor([ 0.2589, -0.6408])
label: tensor([6.8837])
'''
2.小批量读取数据集
定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。下面的``data_iter函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为
batch_size`的小批量。 每个小批量包含一组特征和标签。
def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]
直观感受一下小批量运算:读取第一个小批量数据样本并打印。 每个批量的特征维度显示批量大小和输入特征数。 同样的,批量的标签形状与batch_size
相等。
batch_size = 10for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break'''
tensor([[ 0.9738, 0.9875],[-0.8015, -0.2927],[ 0.1745, 0.2918],[ 1.7484, 0.5768],[ 1.1637, 0.6903],[ 0.6840, 0.3671],[ 0.1465, 0.6662],[-1.8122, 0.4852],[ 1.0590, -0.0379],[-0.9164, -0.4059]]) tensor([[ 2.7853],[ 3.5814],[ 3.5564],[ 5.7416],[ 4.1774],[ 4.3218],[ 2.1962],[-1.0674],[ 6.4454],[ 3.7395]])
'''
3.初始化模型参数
通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。 每次更新都需要计算损失函数关于模型参数的梯度。 有了这个梯度,我们就可以向减小损失的方向更新每个参数。
4.定义模型和损失函数
我们必须定义模型,将模型的输入和参数同模型的输出关联起来。要计算线性模型的输出, 我们只需计算输入特征 X X X 和模型权重 w w w 的矩阵-向量乘法后加上偏置 b b b。注意,上面的 X w Xw Xw 是一个向量,而 b b b 是一个标量,由于广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。
def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b
因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里使用平方损失函数。
def squared_loss(y_hat, y): """均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
5.小批量随机梯度下降更新
小批量随机梯度下降在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。接下来,朝着减少损失的方向更新我们的参数。
下面的函数实现小批量随机梯度下降更新。 该函数接受模型参数集合、学习速率和批量大小作为输入。
因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size
) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。
def sgd(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad():for param in params: # [w,b]param -= lr * param.grad / batch_sizeparam.grad.zero_()
6.训练
在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。 计算完损失后,我们开始反向传播,存储每个参数的梯度。 最后,我们调用优化算法sgd
来更新模型参数。
在每个迭代周期(epoch)中,我们使用data_iter
函数遍历整个数据集, 并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。 这里的迭代周期个数num_epochs
和学习率lr
都是超参数,分别设为3和0.03。
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y) # X和y小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward()sgd([w, b], lr, batch_size) # 使用梯度更新参数with torch.no_grad(): # 查看整体损失值是否下降train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')'''
epoch 1, loss 0.039035
epoch 2, loss 0.000149
epoch 3, loss 0.000050
'''
通过比较真实参数和通过训练学到的参数来评估训练的成功程度:
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
'''
w的估计误差: tensor([ 0.0006, -0.0011], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0007], grad_fn=<RsubBackward1>)
'''
完整代码
import random
import torch# 1.人为构造数据集
def synthetic_data(w, b, num_examples):"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)return X, y.reshape((-1, 1))true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
print('features:', features[0], '\nlabel:', labels[0])# 2.读取数据集
def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]batch_size = 10
for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break# 3.初始化权重和偏置
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)# 4.定义模型定义模型和模型
def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b# 5.定义损失函数
def squared_loss(y_hat, y):"""均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2# 6.定义优化算法
def sgd(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad():for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()# 7.训练
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y) # X和y小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward() # 求损失函数对参数sgd([w, b], lr, batch_size) # 使用梯度更新参数with torch.no_grad(): # 查看整体损失值是否下降train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
相关文章:
动手学深度学习:1.线性回归从0开始实现
动手学深度学习:1.线性回归从0开始实现 1.手动构造数据集2.小批量读取数据集3.初始化模型参数4.定义模型和损失函数5.小批量随机梯度下降更新6.训练完整代码 1.手动构造数据集 根据带有噪声的线性模型构造一个人造数据集,任务是使用这个有限样本的数据集…...

【计算机网络】应用层
应用层协议原理 客户-服务器体系结构: 特点:客户之间不能直接通信;服务器具有周知的,固定的地址,该地址称为IP地址。 配备大量主机的数据中心常被用于创建强大的虚拟服务器;P2P体系结构: 特点&…...

python 深度学习 解决遇到的报错问题9
本篇继python 深度学习 解决遇到的报错问题8-CSDN博客 目录 一、can only concatenate str (not "int") to str 二、cant convert np.ndarray of type numpy.object_. The only supported types are: float64, float32, float16, complex64, complex128, int64, in…...

能源管理系统为什么选择零代码开发平台?
市面上有很多能源管理系统,但是零代码开发能源管理系统却非常少。那为什么推荐选择零代码开发平台呢?因为很多企业缺少技术人员,但是却仍然需要数字化工具和流程推进业务和项目,解决能源管理技术人员不懂代码的矛盾问题࿰…...

【LeetCode】剑指 Offer Ⅱ 第8章:树(12道题) -- Java Version
题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 类型题目解决方案二叉树的深搜剑指 Offer II 047. 二叉树剪枝递归(深搜):二叉树的后序遍历 (⭐)剑指 Offer II 048. 序列化和反序列化二叉树递归&…...

利用maven的dependency插件将项目依赖从maven仓库中拷贝到一个指定的位置
https://maven.apache.org/plugins/maven-dependency-plugin/copy-dependencies-mojo.html 利用dependency:copy-dependencies可以将项目的依赖从maven仓库中拷贝到一个指定的位置。 使用默认配置拷贝依赖 如果直接执行mvn dependency:copy-dependencies,是将项目…...

在Flask中实现文件上传七牛云中并下载
在Flask中实现文件上传和七牛云集成 文件上传是Web应用中常见的功能之一,而七牛云则提供了强大的云存储服务,使得文件存储和管理变得更加便捷。在本篇博客中,我们将学习如何在Flask应用中实现文件上传,并将上传的文件保存到七牛云…...

【Linux】centOS7安装配置及Linux的常用命令---超详细
一,centOS 1.1 centOS的概念 CentOS(Community Enterprise Operating System)是一个由社区支持的企业级操作系统,它是以Red Hat Enterprise Linux(RHEL)源代码为基础构建的。CentOS提供了一个稳定、可靠且…...

【ES专题】ElasticSearch搜索进阶
目录 前言阅读导航前置知识特别提醒笔记正文一、分词器详解1.1 基本概念1.2 分词发生的时期1.3 分词器的组成1.3.1 切词器:Tokenizer1.3.2 词项过滤器:Token Filter1.3.3 字符过滤器:Character Filter 1.4 倒排索引的数据结构 <font color…...

【iOS免越狱】利用IOS自动化WebDriverAgent实现自动直播间自动输入
1.目标 由于看直播的时候主播叫我发 666,支持他,我肯定支持他呀,就一直发,可是后来发现太浪费时间了,能不能做一个直播间自动发 666 呢?于是就开始下面的操作。 2.操作环境 iPhone一台 WebDriverAgent …...

Python基础入门例程28-NP28 密码游戏(列表)
最近的博文: Python基础入门例程27-NP27 朋友们的喜好(列表)-CSDN博客 Python基础入门例程26-NP26 牛牛的反转列表(列表)-CSDN博客 Python基础入门例程25-NP25 有序的列表(列表)-CSDN博客 目录…...

乌班图 Linux 系统 Ubuntu 23.10.1 发布更新镜像
Ubuntu 团队在其官网上发布了Ubuntu 23.10.1 版本,这是目前较新的 Ubuntu 23.10(Focal Fossa)操作系统系列的第一个发行版,旨在为社区提供最新的安装媒体。Ubuntu 22.04 LTS(Focal Fossa)操作系统系列于 2022 年 4 月 21 日发布。 Ubuntu 23.10 LTS(长期支持版本)可用…...

Java金字塔、空心金字塔、空心菱形
Java金字塔 public class TestDemo01 {public static void main(String[] args){//第一个for用于每行输出 从i1开始到i<5,总共5行for(int i1;i<5;i){//每行前缀空格,这个for用于表示每行输出*前面的空格//从上面规律可得,每行输出的空格数为总层数,…...

前端 | (十四)canvas基本用法 | 尚硅谷前端HTML5教程(html5入门经典)
文章目录 📚canvas基本用法🐇什么是canvas(画布)🐇替换内容🐇canvas标签的两个属性🐇渲染上下文 📚绘制矩形🐇绘制矩形🐇strokeRect时,边框像素渲染问题🐇添加…...

206.反转链表
206.反转链表 力扣题目链接(opens new window) 题意:反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 双双指针法: 创建三个节点 pre(反转时的第一个节点)、cur(当前指向需要反转的节点…...

SpringBoot项目从resources目录读取文件
SpringBoot 从 resources 读取文件 使用 Spring 给我们提供的工具类来进行读取 File file org.springframework.util.ResourceUtils.getFile("classpath:人物模板.docx");可能读取失败,出现如下错误: java.io.FileNotFoundException: clas…...
SQL实现根据时间戳和增量标记IDU获取最新记录和脱IDU标记
需求说明:表中有 id, info, cnt 三个字段,对应的增量表多idu增量标记字段和时间戳字段ctimestamp。增量表中的 id 会有重复,其他字段 info、cnt 会不断更新,idu为增量标记字段,ctimestamp为IDU操作的时间戳。目的时要做…...

京东数据平台:2023年9月京东智能家居行业数据分析
鲸参谋监测的京东平台9月份智能家居市场销售数据已出炉! 9月份,智能家居市场销售额有小幅上涨。根据鲸参谋电商数据分析平台的相关数据显示,今年9月,京东平台智能家居的销量为37万,销售额将近8300万,同比增…...

计算两个时间之间连续的日期(java)
背景介绍 给出两个时间,希望算出两者之间连续的日期,比如时间A:2023-10-01 00:00:00 时间B:2023-11-30 23:59:59,期望得到的连续日期为2023-10-01、2023-10-02、… 2023-11-30 Java版代码示例 import java.time.temporal.ChronoUnit; import java.tim…...

Kali Linux:网络与安全专家的终极武器
文章目录 一、Kali Linux 简介二、Kali Linux 的优势三、使用 Kali Linux 进行安全任务推荐阅读 ——《Kali Linux高级渗透测试》适读人群内容简介作者简介目录 Kali Linux:网络与安全专家的终极武器 Kali Linux,对于许多网络和安全专业人士来说&#x…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...