Redis学习之数据删除与淘汰策略(七)
这里写目录标题
- 一、Redis数据特征
- 二、过期数据
- 三、过期数据删除策略
- 3.1 数据删除策略的目标
- 3.2 定时删除
- 3.3 惰性删除
- 3.4 定期删除
- 3.5 删除策略对比
- 3.6 实际应用
- 四、数据淘汰策略
- 4.1 淘汰策略概述
- 4.2 策略配置
一、Redis数据特征
Redis是一种内存级数据库,所有的数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态。
TTL返回的值有三种情况:正数,-1,-2
- 正数:代表该数据在内存中还能存活的时间
- -1:永久有效的数据
- 2 :已经过期的数据 或被删除的数据 或 未定义的数据
二、过期数据
Redis内部,每当我们设置一个键的过期时间时,Redis就会将该键带上过期时间存放到一个过期字典中。
当我们查询一个键时,Redis便首先检查该键是否存在过期字典中,如果存在,那就获取其过期时间。然后将过期时间和当前系统时间进行比对,比系统时间大,那就没有过期;反之判定该键过期。
三、过期数据删除策略
3.1 数据删除策略的目标
在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或 内存泄露
针对过期数据要进行删除的时候都有哪些删除策略呢?
- 1.定时删除
- 2.惰性删除
- 3.定期删除
3.2 定时删除
创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务立即执行对键的删除操作
- 优点:节约内存,到时就删除,快速释放掉不必要的内存占用
- 缺点:CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量
- 总结:用处理器性能换取存储空间(拿时间换空间)
3.3 惰性删除
数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断
- 如果未过期,返回数据
- 发现已过期,删除,返回不存在
- 优点:节约CPU性能,发现必须删除的时候才删除
- 缺点:内存压力很大,出现长期占用内存的数据
- 总结:用存储空间换取处理器性能(拿时间换空间)
3.4 定期删除
定时删除和惰性删除这两种方案都是走的极端,那有没有折中方案?
我们来讲redis的定期删除方案:
-
Redis启动服务器初始化时,读取配置server.hz的值,默认为10
-
每秒钟执行server.hz次serverCron()-------->databasesCron()--------->activeExpireCycle()
-
**activeExpireCycle()**对每个expires[*]逐一进行检测,每次执行耗时:250ms/server.hz
-
对某个expires[*]检测时,随机挑选W个key检测
如果key超时,删除key如果一轮中删除的key的数量>W*25%,循环该过程如果一轮中删除的key的数量≤W*25%,检查下一个expires[*],0-15循环W取值=ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP属性值
-
参数current_db用于记录activeExpireCycle() 进入哪个expires[*] 执行
-
如果activeExpireCycle()执行时间到期,下次从current_db继续向下执行
-
总的来说:定期删除就是周期性轮询redis库中的时效性数据,采用随机抽取的策略,利用过期数据占比的方式控制删除频度
-
特点1:CPU性能占用设置有峰值,检测频度可自定义设置
-
特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理
-
总结:周期性抽查存储空间(随机抽查,重点抽查)
3.5 删除策略对比
1:定时删除:
节约内存,无占用,
不分时段占用CPU资源,频度高,
拿时间换空间
2:惰性删除:
内存占用严重
延时执行,CPU利用率高
拿空间换时间
3:定期删除:
内存定期随机清理
每秒花费固定的CPU资源维护内存
随机抽查,重点抽查
3.6 实际应用
实际应用场景Redis的过期删除策略就是:惰性删除+定期删除两种策略配合使用。
注:Redis服务器没有使用定时删除这种策略;
惰性删除:Redis的惰性删除策略由db.c/expireIfNeeded函数实现,所有键读写命令执行之前都会调用expireIfNeeded函数对其进行检查,如果过期,则删除该键,然后执行键不存在的操作;未过期则不作操作,继续执行原有的命令。
定期删除:由redis.c/activeExpireCycle函数实现,函数以一定频率执行,每当Redis的服务器性执行redis.c/serverCron函数时,activeExpireCycle函数就会被调用,它在规定的时间内,分多次遍历服务器中的各个数据库,从数据库的expires字典中随机检查一部分键的过期时间,并删除其中的过期键
四、数据淘汰策略
4.1 淘汰策略概述
什么叫数据淘汰策略?什么样的应用场景需要用到数据淘汰策略?
当新数据进入redis时,如果内存不足怎么办?在执行每一个命令前,会调用**freeMemoryIfNeeded()**检测内存是否充足。如果内存不满足新 加入数据的最低存储要求,redis要临时删除一些数据为当前指令清理存储空间。清理数据的策略称为逐出算法。
注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕, 如不能达到内存清理的要求,将出现错误信息如下
(error) OOM command not allowed when used memory >'maxmemory'
4.2 策略配置
影响数据淘汰的相关配置如下:
1:最大可使用内存,即占用物理内存的比例,默认值为0,表示不限制。生产环境中根据需求设定,通常设置在50%以上
maxmemory ?mb
2:每次选取待删除数据的个数,采用随机获取数据的方式作为待检测删除数据
maxmemory-samples count
3:对数据进行删除的选择策略
maxmemory-policy policy
那数据删除的策略policy到底有几种呢?一共是3类8种
第一类:检测易失数据(可能会过期的数据集server.db[i].expires )
volatile-lru:挑选最近最少使用的数据淘汰
volatile-lfu:挑选最近使用次数最少的数据淘汰
volatile-ttl:挑选将要过期的数据淘汰
volatile-random:任意选择数据淘汰
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rO91WUnz-1677378276118)(file://E:\邓俊东学习\Redis\1.Redis高级\讲义-md版本\img\lru.png?msec=1677376247604)]
第二类:检测全库数据(所有数据集server.db[i].dict )
allkeys-lru:挑选最近最少使用的数据淘汰
allkeLyRs-lfu::挑选最近使用次数最少的数据淘汰
allkeys-random:任意选择数据淘汰,相当于随机
第三类:放弃数据驱逐
no-enviction(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发OOM(Out Of Memory)
注意:这些策略是配置到哪个属性上?怎么配置?如下所示
maxmemory-policy volatile-lru
数据淘汰策略配置依据
使用INFO命令输出监控信息,查询缓存 hit 和 miss 的次数,根据业务需求调优Redis配置
相关文章:
Redis学习之数据删除与淘汰策略(七)
这里写目录标题一、Redis数据特征二、过期数据三、过期数据删除策略3.1 数据删除策略的目标3.2 定时删除3.3 惰性删除3.4 定期删除3.5 删除策略对比3.6 实际应用四、数据淘汰策略4.1 淘汰策略概述4.2 策略配置一、Redis数据特征 Redis是一种内存级数据库,所有的数据…...
HashMap 面试专题
1、HashMap 的底层结构 ①JDK1.8 以前 JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的hashCode 函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度…...
域组策略自动更新实验报告
域组策略自动更新实验报告 域组策略自动更新实验报告 作者: 高兴源 1要求、我公司为了完善员工的安全性和系统正常漏洞的维护,所以采用域组策略自动更新的方法来提高账户安全性,减少了用户的错误。 1.实验环境如下1台2008r2一台创建域,一台wi…...
Java自定义生成二维码(兼容你所有的需求)
1、概述作为Java开发人员,说到生成二维码就会想到zxing开源二维码图像处理库,不可否认的是zxing确实很强大,但是实际需求中会遇到各种各样的需求是zxing满足不了的,于是就有了想法自己扩展zxing满足历史遇到的各种需求,…...
Spring事务的隔离级别
事务隔离级别解决的是多个事务同时调⽤⼀个数据库的问题 事务传播机制解决的是⼀个事务在多个节点(⽅法)中传递的问题 事务的特性: 隔离性:多个事务在并发执行的时候,多个事务执行的一个行为模式,当一个事务执行的时候,另一个事务执行的一个行…...
JVM系统优化实践(4):以支付系统为例
您好,我是湘王,这是我的CSDN博客,欢迎您来,欢迎您再来~前面说过,JVM会将堆内存划分为年轻代、老年代两个区域。年轻代会将创建和使用完之后马上就要回收的对象放在里面,而老年代则将创建之后需要…...
16- TensorFlow实现线性回归和逻辑回归 (TensorFlow系列) (深度学习)
知识要点 线性回归要点: 生成线性数据: x np.linspace(0, 10, 20) np.random.rand(20)画点图: plt.scatter(x, y)TensorFlow定义变量: w tf.Variable(np.random.randn() * 0.02)tensor 转换为 numpy数组: b.numpy()定义优化器: optimizer tf.optimizers.SGD()定义损失: …...
无自动化测试系统设计方法论
灵活 敏捷 迭代。 自动化测试 辩思 测试必不可少 想想看没有充分测试的代码, 哪一次是一次过的? 哪一次不需要经历下测试的鞭挞? 不要以为软件代码容易改, 就对于质量不切实际的自信—那是自大! 不适用自动化测试的case 遗留系统。太多的依赖方, 不想用过多的mock > …...
架构初探-学习笔记
1 什么是架构 有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。 1.1 单机架构 所有功能都实现在一个进程里,并部署在一台机器上。 1.2 单体架构 分布式部署单机架构 1.3 垂直应用架构 按应用垂直切分的单体架构 1.4 SOA架构 将…...
在成都想转行IT,选择什么专业比较好?
很多创新型的互联网服务公司的核心其实都是软件,创新的基础、运行的支撑都是软件。例如,软件应用到了出租车行业,就形成了巅覆行业的滴滴;软件应用到了金融领域,就形成互联网金融;软件运用到餐饮行业,就形成美团;软件运…...
【Spark分布式内存计算框架——Spark Streaming】4.入门案例(下)Streaming 工作原理
2.3 Streaming 工作原理 SparkStreaming处理流式数据时,按照时间间隔划分数据为微批次(Micro-Batch),每批次数据当做RDD,再进行处理分析。 以上述词频统计WordCount程序为例,讲解Streaming工作原理。 创…...
2、算法先导---思维能力与工具
题目 碎纸片的拼接复原(2013B) 内容 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时…...
WordPress 函数:add_theme_support() 开启主题自定义功能(全面)
add_theme_support() 用于在我们的当前使用的主题添加一些特殊的功能,函数一般写在主题的functions.php文件中,当然也可以再插件中使用钩子来调用该函数,如果是挂在钩子上,那他必须挂在after_setup_theme钩子上,因为 i…...
Winform控件开发(16)——Timer(史上最全)
前言: Timer控件的作用是按用户定义的时间间隔引发事件的计时器,说的直白点就是,他就像一个定时炸弹一样到了一定时间就爆炸一次,区别在于定时炸弹炸完了就不会再次爆炸了,但是Timer这个计时器到了下一个固定时间还会触发一次,上面那张图片就是一个典型的计时器,该定时器…...
游戏高度可配置化:通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解
游戏高度可配置化:通数据引擎在模块化游戏开发中的应用构想图解 ygluu 码客 卢益贵 目录 一、前言 二、模块化与插件 1、常规模块化 2、插件式模块化(插件开发) 三、通用数据引擎理论与构成 1、名字系统(数据类型…...
CountDownLatch与CyclicBarrier原理剖析
1.CountDownLatch 1.1 什么是CountDownLatch CountDownLatch是一个同步工具类,用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)。 CountDownLatch能够使一个线程在等待另外一些线程完成各自工作之…...
NLP中的对话机器人——预训练基准模型
引言 本文是七月在线《NLP中的对话机器人》的视频笔记,主要介绍FAQ问答型聊天机器人的实现。 场景二 上篇文章中我们解决了给定一个问题和一些回答,从中找到最佳回答的任务。 在场景二中,我们来实现: 给定新问题,从…...
C语言学习及复习笔记-【14】C文件读写
14 C文件读写 14.1打开文件 您可以使用 fopen( ) 函数来创建一个新的文件或者打开一个已有的文件,这个调用会初始化类型 FILE 的一个对象,类型 FILE包含了所有用来控制流的必要的信息。下面是这个函数调用的原型: FILE *fopen( const char…...
模拟退火算法优化灰色
clc; clear; close all; warning off; %% tic T01000; % 初始温度 Tend1e-3; % 终止温度 L200; % 各温度下的迭代次数(链长) q0.9; %降温速率 X[16.4700 96.1000 16.4700 94.4400 20.0900 92.5400 22.3900 93.3700 25.…...
Pandas怎么添加数据列删除列
Pandas怎么添加数据列 1、直接赋值 # 1、直接赋值df.loc[:, "最高气温"] df["最高气温"].str.replace("℃", "").astype("int32")df.loc[:, "最低气温"] df["最低气温"].str.replace("℃"…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
