当前位置: 首页 > news >正文

Py之auto-gptq:auto-gptq的简介、安装、使用方法之详细攻略

Py之auto-gptq:auto-gptq的简介、安装、使用方法之详细攻略

目录

auto-gptq的简介

1、版本更新历史

2、性能对比

推理速度

困惑度(PPL)

3、支持的模型

3、支持的评估任务

auto-gptq的安装

auto-gptq的使用方法

1、基础用法

(1)、量化和推理


auto-gptq的简介

AutoGPTQ是一个易于使用的低延迟语言模型(LLM)量化软件包,具有用户友好的API,基于GPTQ算法。一个基于 GPTQ 算法,简单易用且拥有用户友好型接口的大语言模型量化工具包

1、版本更新历史

2023-08-23 - (新闻) - ��� Transformers、optimum 和 peft 完成了对 auto-gptq 的集成,现在使用 GPTQ 模型进行推理和训练将变得更容易!阅读 这篇博客 和相关资源以了解更多细节!
2023-08-21 - (新闻) - 通义千问团队发布了基于 auto-gptq 的 Qwen-7B 4bit 量化版本模型,并提供了详尽的测评结果
2023-08-06 - (更新) - 支持 exllama 的 q4 CUDA 算子使得 int4 量化模型能够获得至少1.3倍的推理速度提升.
2023-08-04 - (更新) - 支持 RoCm 使得 AMD GPU 的用户能够使用 auto-gptq 的 CUDA 拓展.
2023-07-26 - (更新) - 一个优雅的 PPL 测评脚本以获得可以与诸如 llama.cpp 等代码库进行公平比较的结果。
2023-06-05 - (更新) - 集成 ��� peft 来使用 gptq 量化过的模型训练适应层,支持 LoRA,AdaLoRA,AdaptionPrompt 等。
2023-05-30 - (更新) - 支持从 ��� Hub 下载量化好的模型或上次量化好的模型到 ��� Hub。

2、性能对比

推理速度

以下结果通过这个脚本生成,文本输入的 batch size 为1,解码策略为 beam search 并且强制模型生成512个 token,速度的计量单位为 tokens/s(越大越好)。

量化模型通过能够最大化推理速度的方式加载。

modelGPUnum_beamsfp16gptq-int4
llama-7b1xA100-40G118.8725.53
llama-7b1xA100-40G468.7991.30
moss-moon 16b1xA100-40G112.4815.25
moss-moon 16b1xA100-40G4OOM42.67
moss-moon 16b2xA100-40G106.8306.78
moss-moon 16b2xA100-40G413.1010.80
gpt-j 6b1xRTX3060-12G1OOM29.55
gpt-j 6b1xRTX3060-12G4OOM47.36

困惑度(PPL)

对于困惑度的对比, 你可以参考 这里 和 这里

3、支持的模型

你可以使用 model.config.model_type 来对照下表以检查你正在使用的一个模型是否被 auto_gptq 所支持。
比如, WizardLMvicuna 和 gpt4all 模型的 model_type 皆为 llama, 因此这些模型皆被 auto_gptq 所支持。

model typequantizationinferencepeft-lorapeft-ada-lorapeft-adaption_prompt
bloom
gpt2
gpt_neox✅要求该分支的 peft
gptj✅要求该分支的 peft
llama
moss✅要求该分支的 peft
opt
gpt_bigcode
codegen
falcon(RefinedWebModel/RefinedWeb)

3、支持的评估任务

目前, auto_gptq 支持以下评估任务: 更多的评估任务即将到来!

LanguageModelingTask, 
SequenceClassificationTask 和 
TextSummarizationTask;

auto-gptq的安装

你可以通过 pip 来安装与 PyTorch 2.0.1 相兼容的最新稳定版本的 AutoGPTQ 的预构建轮子文件:警告: 预构建的轮子文件不一定在 PyTorch 的 nightly 版本上有效。如果要使用 PyTorch 的 nightly 版本,请从源码安装 AutoGPTQ。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple auto-gptq对于 CUDA 11.7: 
pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu117/对于 CUDA 11.8: 
pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/对于 RoCm 5.4.2: pip install auto-gptq --extra-index-url https://huggingfac
e.github.io/autogptq-index/whl/rocm542/

auto-gptq的使用方法

1、基础用法

(1)、量化和推理

警告:这里仅是对 AutoGPTQ 中基本接口的用法展示,只使用了一条文本来量化一个特别小的模型,因此其结果的表现可能不如在大模型上执行量化后预期的那样好。以下展示了使用 auto_gptq 进行量化和推理的最简单用法:

from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfigpretrained_model_dir = "facebook/opt-125m"
quantized_model_dir = "opt-125m-4bit"tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
examples = [tokenizer("auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm.")
]quantize_config = BaseQuantizeConfig(bits=4,  # 将模型量化为 4-bit 数值类型group_size=128,  # 一般推荐将此参数的值设置为 128desc_act=False,  # 设为 False 可以显著提升推理速度,但是 ppl 可能会轻微地变差
)# 加载未量化的模型,默认情况下,模型总是会被加载到 CPU 内存中
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)# 量化模型, 样本的数据类型应该为 List[Dict],其中字典的键有且仅有 input_ids 和 attention_mask
model.quantize(examples)# 保存量化好的模型
model.save_quantized(quantized_model_dir)# 使用 safetensors 保存量化好的模型
model.save_quantized(quantized_model_dir, use_safetensors=True)# 将量化好的模型直接上传至 Hugging Face Hub 
# 当使用 use_auth_token=True 时, 确保你已经首先使用 huggingface-cli login 进行了登录
# 或者可以使用 use_auth_token="hf_xxxxxxx" 来显式地添加账户认证 token
# (取消下面三行代码的注释来使用该功能)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)# 或者你也可以同时将量化好的模型保存到本地并上传至 Hugging Face Hub
# (取消下面三行代码的注释来使用该功能)
# repo_id = f"YourUserName/{quantized_model_dir}"
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)# 加载量化好的模型到能被识别到的第一块显卡中
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")# 从 Hugging Face Hub 下载量化好的模型并加载到能被识别到的第一块显卡中
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)# 使用 model.generate 执行推理
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))# 或者使用 TextGenerationPipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
print(pipeline("auto-gptq is")[0]["generated_text"])

相关文章:

Py之auto-gptq:auto-gptq的简介、安装、使用方法之详细攻略

Py之auto-gptq:auto-gptq的简介、安装、使用方法之详细攻略 目录 auto-gptq的简介 1、版本更新历史 2、性能对比 推理速度 困惑度(PPL) 3、支持的模型 3、支持的评估任务 auto-gptq的安装 auto-gptq的使用方法 1、基础用法 (1)、量…...

【Linux】Linux+Nginx部署项目(负载均衡动静分离)

🥳🥳Welcome Huihuis Code World ! !🥳🥳 接下来看看由辉辉所写的关于Linux的相关操作吧 目录 🥳🥳Welcome Huihuis Code World ! !🥳🥳 一.Nginx负载均衡 1.什么是负载均衡 2.实…...

C++笔记之vector的成员函数swap()和data()

C笔记之vector的成员函数swap()和data() 标准C中的std::vector类确实有swap()和data()这两个成员函数。下面是它们的简要描述: swap(): std::vector的swap()成员函数用于交换两个向量的内容,实现了高效的交换操作,不需要复制向量的元素。这…...

Linux centos环境 安装谷歌浏览器

教程 地址...

go-gin-vue3-elementPlus带参手动上传文件

文章目录 一. 总体代码流程1.1 全局Axios部分样例1.2 上传业务 二. 后端部分三. 测试样例 go的mvc层使用gin框架. 总的来说gin的formFile封装的不如springboot的好.获取值有很多的坑. 当然使用axios的formData也有不少坑.现给出较好的解决办法 以下部分仅贴出关键代码 一. 总…...

艺术的维度:洞察AI诈骗,优雅防范之艺术

当前,AI技术的广泛应用为社会公众提供了个性化智能化的信息服务,也给网络诈骗带来可乘之机,如不法分子通过面部替换语音合成等方式制作虚假图像、音频、视频仿冒他人身份实施诈骗、侵害消费者合法权益。 以下是一些常见的AI诈骗例子&#xf…...

JavaScript的作用域和作用域链

作用域 ● 作用域(Scoping):我们程序中变量的组织和访问方式。"变量存在在哪里?“或者"我们可以在哪里访问某个变量,以及在哪里不能访问?” ● 词法作用域(Lexical scoping&#xff…...

电脑文件批量重命名攻略:高效操作技巧助您轻松完成任务

在日常使用电脑时,我们经常需要对文件进行重命名。当文件数量众多时,手动重命名既耗时又容易出错。此时,借助一些实用技巧,我们可以轻松地完成电脑文件的批量重命名。本文将提供一份全面的电脑文件批量重命名攻略,帮助…...

四、三种基本程序结构

1、程序结构 (1)在C语言程序中,一共有三种程序结构:顺序结构、选择结构(分支结构)、循环结构。 顺序结构:按照事务本身特性,必须一个接着一个来完成。选择结构:到某个节点后,会根据一次判断结果来决定之后…...

深入理解元素的高度、行高、行盒和vertical-align

1.块级元素的高度 当没有设置高度时,高度由内容撑开,实际上是由行高撑开,当有多行时,高度为每行的行高高度之和。 行高为什么存在? 因为每行都由一个行盒包裹,行高实际上是行盒的高度。 2.什么是行盒&am…...

什么叫储能能量管理单元EMU?储能能量管理单元EMU功能?储能EMU是什么?储能能量管理系统如何实现一次调频AGC-AVC功能?

一:储能EMU是什么意思?什么叫储能能量管理单元EMU? EMU是能量管理单元的英文缩写 (Energy Management Unit, EMU) EmuPower3300能量管理单元EMU是由广州智昊电气研发配套EsccPower3300储能协调管理器组成对光伏电站的管理,控制,…...

机器学习之决策树

决策树: 是一种有监督学习方法,从一系列有特征和标签的数据中总结出决策规则,并采用树状图的结构来呈现规则,用来解决分类和回归问题。 节点:根节点:没有进边,有出边。包含最初的,针…...

聊聊logback的UNDEFINED_PROPERTY

序 本文主要研究一下logback的UNDEFINED_PROPERTY substVars ch/qos/logback/core/util/OptionHelper.java public static String substVars(String input, PropertyContainer pc0, PropertyContainer pc1) {try {return NodeToStringTransformer.substituteVariable(input,…...

记一次pdjs时安装glob出现,npm ERR! code ETARGET和npm ERR! code ELIFECYCLE

如往常一样,我使用pdjs来编译proto文件,但出现了以下报错: 大致就是pdjs的util在尝试执行npm install glob^7.2.1 escodegen^1.13.0时出错了 尝试手动执行安装,escodegen被正确安装,但glob^7.2.1出错 npm ERR! code E…...

Zabbix如何监控腾讯云NAT网关

1、NAT网关介绍 NAT 网关(NAT Gateway)是一种支持 IP 地址转换服务,提供网络地址转换能力,主要包括SNAT(Source Network Address Translation,源网络地址转换)和DNAT(Destination N…...

SpringBoot案例(数据层、业务层、表现层)

1.创建项目 2.选择坐标 3.添加坐标 说明&#xff1a;为了便于开发&#xff0c;引入了lombak坐标。 <!--添加mybatis-plus坐标--><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><ver…...

交叉编译程序:以 freetype 为例

1 程序运行的一些基础知识 1.1 编译程序时去哪找头文件&#xff1f; 系统目录&#xff1a;就是交叉编译工具链里的某个 include 目录&#xff1b;也可以自己指定&#xff1a;编译时用 “ -I dir ” 选项指定。 1.2 链接时去哪找库文件&#xff1f; 系统目录&#…...

spring-cloud-starter-dubbo不设置心跳间隔导致生产者重启no Provider问题记录

版本 spring-cloud-starter-dubbo-2.2.4.RELEASE 问题描述 生产者重启后&#xff0c;正常注册到注册中心&#xff0c;但是消费者调用接口是no provider&#xff0c;偶现&#xff0c;频繁出现 解决办法 先说原因和解决办法&#xff0c;有兴趣可以看下问题的排查过程。 原因…...

【数据结构】败者树的建树与比较过程

文章目录 前置知识归并段 建树过程比较过程疑问为什么比较次数减少了&#xff1f;如果某个归并段的元素一直获胜&#xff0c;没有元素了怎么办&#xff1f;处理方法 1处理方法 2 前置知识 归并段 外部排序算法通常用于处理大规模数据&#xff0c;其中数据量远超过计算机内存的…...

GlobalMapper---dem生成均匀分布的网格,或者均匀分布的点高程点

1打开DEM数据。点击工具栏上的Open Data File(s)按钮&#xff0c;打开DEM数据 2点击【Create Grid】按钮 3生成点 4导出格式xyz 5南方cass展点 6过滤抽稀...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...