当前位置: 首页 > news >正文

人工智能-深度学习计算:层和块

我们关注的是具有单一输出的线性模型。 在这里,整个模型只有一个输出。

注意,单个神经网络 (1)接受一些输入; (2)生成相应的标量输出; (3)具有一组相关 参数(parameters),更新这些参数可以优化某目标函数。

然后,当考虑具有多个输出的网络时, 我们利用矢量化算法来描述整层神经元。 像单个神经元一样,层(1)接受一组输入, (2)生成相应的输出, (3)由一组可调整参数描述。 当我们使用softmax回归时,一个单层本身就是模型。 然而,即使我们随后引入了多层感知机,我们仍然可以认为该模型保留了上面所说的基本架构。

对于多层感知机而言,整个模型及其组成层都是这种架构。 整个模型接受原始输入(特征),生成输出(预测), 并包含一些参数(所有组成层的参数集合)。 同样,每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。

事实证明,研究讨论“比单个层大”但“比整个模型小”的组件更有价值。 例如,在计算机视觉中广泛流行的ResNet-152架构就有数百层, 这些层是由层组(groups of layers)的重复模式组成。 这个ResNet架构赢得了2015年ImageNet和COCO计算机视觉比赛 的识别和检测任务 (He et al., 2016)。 目前ResNet架构仍然是许多视觉任务的首选架构。 在其他的领域,如自然语言处理和语音, 层组以各种重复模式排列的类似架构现在也是普遍存在。

为了实现这些复杂的网络,我们引入了神经网络的概念。 (block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的。 通过定义代码来按需生成任意复杂度的块, 我们可以通过简洁的代码实现复杂的神经网络。

 下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from torch import nn
from torch.nn import functional as Fnet = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))X = torch.rand(2, 20)
net(X)
tensor([[ 0.0343,  0.0264,  0.2505, -0.0243,  0.0945,  0.0012, -0.0141,  0.0666,-0.0547, -0.0667],[ 0.0772, -0.0274,  0.2638, -0.0191,  0.0394, -0.0324,  0.0102,  0.0707,-0.1481, -0.1031]], grad_fn=<AddmmBackward0>)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。

相关文章:

人工智能-深度学习计算:层和块

我们关注的是具有单一输出的线性模型。 在这里&#xff0c;整个模型只有一个输出。 注意&#xff0c;单个神经网络 &#xff08;1&#xff09;接受一些输入&#xff1b; &#xff08;2&#xff09;生成相应的标量输出&#xff1b; &#xff08;3&#xff09;具有一组相关 参数…...

Linux第一个小程序进度条

缓冲区 ​ 在写进度条程序之前我们需要介绍一下缓冲区&#xff0c;缓冲区有两种&#xff0c;输入和输出缓冲区&#xff0c;这里主要介绍输出缓冲区。在我们用C语言写代码时&#xff0c;输出一些信息&#xff0c;实际上是先输出到输出缓冲区里&#xff0c;然后才输出到我们的显…...

JavaEE平台技术——预备知识(Maven、Docker)

JavaEE平台技术——预备知识&#xff08;Maven、Docker&#xff09; 1. Maven2. Docker 在观看这个之前&#xff0c;大家请查阅前序内容。 &#x1f600;JavaEE的渊源 &#x1f600;&#x1f600;JavaEE平台技术——预备知识&#xff08;Web、Sevlet、Tomcat&#xff09; 1. M…...

【ChatOCR】OCR+LLM定制化关键信息抽取(附开源大语言模型汇总整理)

目录 背景技术方案存在的问题及解决思路关键信息提取结果其他解决方案替换文心一言LangChain大型多模态模型&#xff08;Large Multimodal Model, LMM&#xff09; 开源大模型汇总LLaMA —— Meta 大语言模型Stanford Alpaca —— 指令调优的 LLaMA 模型Lit-LLaMA —— 基于 na…...

【位运算】XOR Construction—CF1895D

XOR Construction—CF1895D 参考文章 翻译 题目要求构造一个长度为 n n n 的数组 b b b&#xff0c;满足以下条件&#xff1a; 数组 b b b 中包含从 0 0 0 到 n − 1 n-1 n−1 的每个整数&#xff0c;且每个整数仅出现一次&#xff1b;对于 i i i 从 1 1 1 到 n − …...

解决Visual Studio Code 控制台中文乱码问题

C和CPP运行编码指定 "code-runner.executorMap": {"c": "cd $dir && gcc -fexec-charsetGBK $fileName -o $fileNameWithoutExt && $dir$fileNameWithoutExt","cpp": "cd $dir && g -fexec-charsetGBK $…...

React Native自学笔记

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…...

程序员笔记本电脑选 windows 还是 MAC

计算机选择是每个进入 IT 行业同学的第一个重要选择&#xff0c;那么你是怎么选择的呢&#xff1f; 选择操作系统&#xff08;Windows还是macOS&#xff09;取决于程序员的需求、偏好和工作流程。每个操作系统都有其优点和缺点&#xff0c;下面将分别讨论它们&#xff0c;以帮助…...

蓝桥杯每日一题2023.11.5

题目描述 方格分割 - 蓝桥云课 (lanqiao.cn) 题目分析 对于每个图我们可以从中间开始搜索&#xff0c;如果到达边界点就说明找到了一种对称的方法&#xff0c;我们可以直接对此进行答案记录每次进行回溯就会找到不同的图像&#xff0c;如果是一样的图像则算一种情况&#xff…...

多媒体应用设计师 2023年(含答案回忆版)

以下是小红书上的回忆版 软考考完疯狂回忆&#xff0c;多媒体应用设计师选择题 1.pattern 2.effective 3.merge 4.applications 5.graphic 6.udp 7.rtp 8.rtsp 9.10cm 10.永久 11…97 12.工作技术管理标准 13.管理型元数据 14.premiere 15.wave 16.500km/h 17.3M 18.44000 19.…...

[Machine Learning][Part 8]神经网络的学习训练过程

目录 训练过程 一、建立模型&#xff1a; 二、建立损失函数 J(w,b): 三、寻找最小损失函数的(w,b)组合 为什么需要激活函数 激活函数种类 二分法逻辑回归模型 线性回归模型 回归模型 训练过程 一、建立模型&#xff1a; 根据需求建立模型&#xff0c;从前面神经网络的…...

Git 内容学习

一、Git 的理解 Git是一个分布式版本控制系统&#xff08;Distributed Version Control System&#xff0c;简称 DVCS&#xff09;&#xff0c;用于对项目源代码进行管理和跟踪变更。分为两种类型的仓库&#xff1a;本地仓库和远程仓库。 二、Git 的工作流程 详解如下&#x…...

Zookeeper3.7.1分布式安装部署

上传安装文件到linux系统上面 解压安装文件到安装目录 [zhangflink9wmwtivvjuibcd2e package]$ tar -zxvf apache-zookeeper-3.7.1-bin.tar.gz -C /opt/software/3. 修改解压文件名 [zhangflink9wmwtivvjuibcd2e software]$ mv apache-zookeeper-3.7.1-bin/ zookeeper-3.7…...

CSS必学:元素之间的空白与行内块的幽灵空白问题

作者:WangMin 格言:努力做好自己喜欢的每一件事 CSDN原创文章 博客地址 &#x1f449; WangMin 我们在开发的过程中&#xff0c;难免会出现一些难以预料的问题。那么其中&#xff0c;CSS空白现象就是非常常见的问题之一。虽然它已经被发现很久&#xff0c;但仍然有许多新手和经…...

C++类中对构造函数的重载

C类中对构造函数的重载 C 允许在同一作用域中的某个函数和运算符指定多个定义&#xff0c;分别称为函数重载和运算符重载。 重载声明是指一个与之前已经在该作用域内声明过的函数或方法具有相同名称的声明&#xff0c;但是它们的参数列表和定义&#xff08;实现&#xff09;不…...

QtC++与QLabel详解

介绍 QLabel 类是Qt中的一个用于显示文本或图像的控件类&#xff0c;通常用于用户界面中以提供静态文本或图片显示的功能。以下是对QLabel在Qt中的作用的详细解释&#xff1a; 文本和图像显示&#xff1a; QLabel 可以用来显示文本和图像。这使得它成为显示标签、标题、说明或…...

090基于web+springboot的中小企业设备管理系统

欢迎大家关注&#xff0c;一起好好学习&#xff0c;天天向上 文章目录 一项目简介技术介绍 二、功能组成三、效果图四、 文章目录 一项目简介 本中小企业设备管理系统管理员有个人中心&#xff0c;用户管理&#xff0c;员工管理&#xff0c;设备信息管理&#xff0c;配件信息管…...

input 调起键盘 ,键盘距离输入框底部太近

input 调起键盘 &#xff0c;键盘距离输入框底部太近 解决方法 cursorSpacing‘20’ 单位是 ‘px’ <input cursorSpacing20 type"text" v-model"replyMain" />距离底部距离 20px &#xff0c;输入框距离键盘距离是20px...

前端深拷贝与浅拷贝的实现

1、浅拷贝和深拷贝的定义 1.1、浅拷贝 有两种方式&#xff0c;一种是把一个对象里面的所有的属性值和方法都复制给另一个对象&#xff0c;另一种是直接把一个对象赋给另一个对象&#xff0c;使得两个都指向同一个对象。浅拷贝对内存地址的复制&#xff0c;让目标对象指针和源…...

哆啦百宝箱APP

专门为年轻人设计的APP&#xff0c;主打的免费、无恶心广告、不获取任何个人信息。 哆啦百宝箱 ● 永久免费 ● 无恶心广告 ● 种类巨多 ● 全民参与 ● 爆款功能 ● 用心创造 哆啦百宝箱 提供了从日常、图片、查询、设备、趣味、娱乐等多方面的功能&#xff0c; 操作简单&a…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...