容斥恒等式的证明
容斥恒等式的证明
推广公式
P(A∪B)=P(A)+P(B)−P(A∩B)P(A\cup B)=P(A)+P(B)-P(A\cap B) P(A∪B)=P(A)+P(B)−P(A∩B)
(a)设A、B、C为三个事件,则下列恒等式成立:
P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)
(b)设A1A_1A1,A2A_2A2,A3A_3A3,…,AnA_nAn为n个事件,令S1S_1S1={i∣1≤i≤ni|1\leq i \leq ni∣1≤i≤n},S2S_2S2={(i1,i2)∣1≤i1<i2≤n(i_1,i_2)|1\leq i_1 < i_2 \leq n(i1,i2)∣1≤i1<i2≤n},一般的,令S1S_1S1为满足条件$ \le i_1 < i_2<… < i_m\le n的m维指标,(的m维指标,(的m维指标,(i_1,…i_m$)的集合,则下列恒等式成立:
P(∪k=1nAk)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k})P(∪k=1nAk)=i∈S1∑P(Ai)−(i1,i2)∈S2∑P(Ai1∩Ai2)+i1,i2,i3∈S3∑P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)
解:(a)利用公式P(X∪Y)=P(X)+P(Y)−P(X∩Y)P(X\cup Y)=P(X)+P(Y)-P(X\cap Y)P(X∪Y)=P(X)+P(Y)−P(X∩Y)和(A∪B)∩C=(A∩C)∪(B∩C)(A\cup B)\cap C=(A\cap C)\cup (B\cap C)(A∪B)∩C=(A∩C)∪(B∩C),我们有
P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C)=P(A∪B)+P(C)−P((A∩C)∪(B∩C))=P(A∪B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C)=P(A)+P(B)−P(A∩B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)P(A\cup B\cup C)=P(A\cup B)+P(C)-P((A\cup B )\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P((A\cap C )\cup (B\cap C))\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)-P(A\cap B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C)P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C) =P(A∪B)+P(C)−P((A∩C)∪(B∩C)) =P(A∪B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C) =P(A)+P(B)−P(A∩B)+P(C)−P(A∩C)−P(B∩C)+P(A∩B∩C) =P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)
(b)利用归纳法,主要推断部分可以模仿(a)中步骤
n=2时,P(A∪B)=P(A)+P(B)−P(A∩B)P(A\cup B)=P(A)+P(B)-P(A\cap B)P(A∪B)=P(A)+P(B)−P(A∩B).
假设n=k-1,有
P(∪k=1k−1Ak)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−2P(∩k=1k−1Aik)P(\cup^{k-1}_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-2}P(\cap^{k-1}_{k=1}A_{i_k})P(∪k=1k−1Ak)=i∈S1∑P(Ai)−(i1,i2)∈S2∑P(Ai1∩Ai2)+i1,i2,i3∈S3∑P(Ai1∩Ai2∩Ai3)−...+(−1)n−2P(∩k=1k−1Aik)
则n=k时,P(∪k=1nAk)=P(∪k=1k−1Ak∪Ak)P(\cup^n_{k=1}A_k)=P(\cup^{k-1}_{k=1}A_k\cup A_k)P(∪k=1nAk)=P(∪k=1k−1Ak∪Ak)
令∪i=1k−1Ai=B\cup^{k-1}_{i=1}A_i=B∪i=1k−1Ai=B,
P(∪k=1nAk)=P(B∪Ak)P(\cup^n_{k=1}A_k)=P(B\cup A_k)P(∪k=1nAk)=P(B∪Ak)
所以,
P(∪k=1nAk)=P(B∪Ak)=P(B)+P(Ak)−P(B∩Ak)P(\cup^n_{k=1}A_k)=P(B\cup A_k)=P(B)+P(A_k)-P(B\cap A_k)P(∪k=1nAk)=P(B∪Ak)=P(B)+P(Ak)−P(B∩Ak) (1)
前两个地方都很好推导,主要是最后一项。
P(B∩Ak)=P(∪i=1k−1AiAk)=∑i=1k−1P(AiAk)+(−11)∑1≤i1<i2≤ik−1P(Ai1Ai2Ak)+...+(−1)k−2P(A1A2...Ak)P(B\cap A_k)=P(\cup^{k-1}_{i=1}A_iA_k)\\=\displaystyle \sum_{i=1}^{k-1}P(A_iA_k)+(-1^1) \displaystyle \sum_{1\le i_1<i_2\le i_{k-1}}P(A_{i_1}A_{i_2}A_k)+...+(-1)^{k-2}P(A_1A_2...A_k)P(B∩Ak)=P(∪i=1k−1AiAk)=i=1∑k−1P(AiAk)+(−11)1≤i1<i2≤ik−1∑P(Ai1Ai2Ak)+...+(−1)k−2P(A1A2...Ak) (2)
把(2)带入(1),
得到:
P(∪k=1nAk)=∑i∈S1P(Ai)−∑(i1,i2)∈S2P(Ai1∩Ai2)+∑i1,i2,i3∈S3P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k})P(∪k=1nAk)=i∈S1∑P(Ai)−(i1,i2)∈S2∑P(Ai1∩Ai2)+i1,i2,i3∈S3∑P(Ai1∩Ai2∩Ai3)−...+(−1)n−1P(∩k=1nAk)
得证。
相关文章:
容斥恒等式的证明
容斥恒等式的证明 推广公式 P(A∪B)P(A)P(B)−P(A∩B)P(A\cup B)P(A)P(B)-P(A\cap B) P(A∪B)P(A)P(B)−P(A∩B) (a)设A、B、C为三个事件,则下列恒等式成立: P(A∪B∪C)P(A)P(B)P(C)−P(A∩B)−P(A∩C)−P(B∩C)P(A∩B∩C)P(A\cup B\cup C)P(A)P(B)P(C)…...

Java中的this与super关键字深度解析
一、this关键字this 关键字是 Java 常用的关键字,可用于任何实例方法内指向当前对象,也可指向对其调用当前方法的对象,或者在需要当前类型对象引用时使用。(1)this.属性名this修饰的变量用于指代成员变量方法的形参如果…...

CSS3新增的视口单位Vh、Vw单位
定义vw:浏览器可见视口【宽度】的百分比(1vw代表视窗【宽度】的1%)vh:浏览器可见视口【高度】的百分比(1vw代表视窗【高度】的1%)vmin:当前 vw 和 vh 较小的一个值。vmax:当前 vw 和…...

【Linux】yum安装docker指定版本
🍁博主简介 🏅云计算领域优质创作者 🏅华为云开发者社区专家博主 🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入! 文章目录卸载已有的docker部署指定版本docker安…...

SpringBoot相关操作
01-今日内容 Spring概述、快速入门SpringBoot配置SpringBoot整合 02-SpringBoot概述 SpringBoot提供了一种快速使用Spring的方式,基于约定优于配置的思想,可以让开发人员不必在配置与逻辑业务之间进行思维的切换,全身心的投入到逻辑业务的…...
Python super()函数:调用父类的构造方法
Python 中子类会继承父类所有的类属性和类方法。严格来说,类的构造方法其实就是实例方法,因此毫无疑问,父类的构造方法,子类同样会继承。 但我们知道,Python 是一门支持多继承的面向对象编程语言,如果子类…...

@ConfigurationProperties在方法上的使用
文章目录1. 前言2. 先说结论3. 代码解释1. Component ConfigurationProperties2. EnableConfigurationProperties ConfigurationProperties3. Bean ConfigurationProperties1. 前言 在学习spring的时候,ConfigurationProperties应该经常被使用到,作用…...
【QT】如何查找和获取界面上的子部件(findChild 和 findChidren)
目录1. findChild()函数2. findChildren()函数3. 示例1. findChild()函数 函数原型: T QObject::findChild(const QString &name QString(), Qt::FindChildOptions options Qt::FindChildrenRecursively) const返回该对象的子对象,该子对象可以转…...
MIT 6.S081学习笔记
计划花25天时间学完6.S081课程,从2月20日-3月20日。课程主页Link xv6 book GDB User Manual Lecture 1: Introduction and Examples课程主题:设计和实现操作系统 OS的三大功能:多路复用、隔离和交互。 Lab: Xv6 and Unix utiliti…...

《网络安全入门到精通》 - 2.1 - Windows基础 - DOS命令Windows防火墙Windows共享文件
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「订阅专栏」:此文章已录入专栏《网络安全入门到精通》 Windows基础一、DOS命令1、目录文件操作dir 列出目录文件cd 切换目录md 创建目录rd 删除目录move 移动文件或目…...

八、Vben框架动态生成可编辑Table
开发过程中产品经理提出了一些奇怪的需求,让人很摸不着头脑,一问就是客户的需求就是这样,那么我们开发只能想各种办法啦。 最近就提出了两个需求, 第一个是需要在日期选择的时候根据时间选择的不同让底下table中增加两个时间中间的…...
浅谈ERP数据的重要性
影响一个ERP项目的因素有很多,数据无疑是其中很重要的一项,正所谓“正确的诊断源于准确的信息,准确的信息基于可靠的采集”,当我们抓住数据这个根基,大处着眼,小处着手的时候,我们距离ERP成功的日子就不会太…...

【RabbitMQ笔记06】消息队列RabbitMQ七种模式之Topics主题模式
这篇文章,主要介绍消息队列RabbitMQ七种模式之Topics主题模式。 目录 一、消息队列 1.1、主题模式(Topics) 1.2、案例代码 (1)引入依赖 (2)编写生产者 (3)编写消费…...

ChatGPT似乎有的时候并不能搞懂Java的动态分派,你懂了吗?
目录 碎碎念 ChatGPT 中出现的问题 那么正确答案应该是什么呢? 分派的相关知识点总结: 分派是什么? 静态分派与动态分派: Java语言是静态多分派,动态单分派的; 静态分派:静态重载多分派…...

【C++初阶】vector的模拟实现
大家好我是沐曦希💕 文章目录一、前言二、无参构造&析构三、基础接口1.empty和clear2.size和capacity3.[]和iterator四、reserve和resize五、尾插尾删六、其他构造1.迭代器区间构造2.拷贝构造七、memcpy问题八、完整代码一、前言 在模拟实现容器时候࿰…...

微信小程序、小游戏的流量主一般可以赚多少钱?
本篇文章主要科普小程序、小游戏流量主一般赚钱的实际情况,通过在下长期运营的经验汇总而成。 日期:2023年2月26日 作者:任聪聪 小程序、小程序满1000用户后即可开通流量主,但实际上很多人并没有传说中的那种日赚几千的流量收入的…...

jni-Demo-基于linux(c++ java)
跑一个jni 的最简单的Demo需要提前准备 VsCode 编译器、win10下,vscode中集成linux操作系统、c编译器(gcc、g),java编译器(jdk1.8)参考:https://mangocool.com/1653030123842.htmlJniDemo类&…...

指针的进阶——(1)
本次讲解重点: 1、字符指针 2、数组指针 3、指针数组 4、数组传参和指针传参 5、函数指针 关于指针这个知识点的主题,我们在前面已经初级阶段已经对指针有了大致的理解和应用了。我们知道了指针的概念: 1、指针就是地址,但口…...

电商平台的促销活动如何抵御大流量的ddos攻击
每一次活动大促带来的迅猛流量,对技术人而言都是一次严峻考验。如果在活动期间遭受黑产恶意 DDoS 攻击,无疑是雪上加霜。电商的特性是业务常态下通常不会遭受大流量 DDoS 攻击,且对延迟敏感,因此只需要在活动期间按需使用 DDoS 防…...
代码随想录-48-104. 二叉树的最大深度
目录前言题目1.层序迭代思路2. 本题思路分析:3. 算法实现4. pop函数的算法复杂度5. 算法坑点前言 在本科毕设结束后,我开始刷卡哥的“代码随想录”,每天一节。自己的总结笔记均会放在“算法刷题-代码随想录”该专栏下。 代码随想录此题链接 …...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...