大厂面试题-b树和b+树的理解
为了更清晰的解答这个问题,从三个方面来回答:
a.了解二叉树、AVL树、B树的概念
b.B树和B+树的应用场景
1.B树是一种多路平衡查找树,为了更形象的理解,我们来看这张图。
二叉树,每个节点支持两个分支的树结构,相比于单向链表,多了一个分支。
二叉查找树,在二叉树的基础上增加了一个规则,左子树的所有节点的值都小于它的根节点,右子树的所有子节点都大于它的根节点。

(如图),二叉查找树会出现斜树问题,导致时间复杂度增加,因此又引入了一种平衡二叉树,它具有二叉查找树的所有特点,同时增加了一个规则:”它的左右两个子树的高度差的绝对值不超过1“。平衡二叉树会采用左旋、右旋的方式来实现平衡。

(如图),而B树是一种多路平衡查找树,它满足平衡二叉树的规则,但是它可以有多个子树,子树的数量取决于关键字的数量,比如这个图中根节点有两个关键字3和5,那么它能够拥有的子路数量=关键字数+1。
因此从这个特征来看,在存储同样数据量的情况下,平衡二叉树的高度要大于B树。

B+树,其实是在B树的基础上做的增强,最大的区别有两个:
a.B树的数据存储在每个节点上,而B+树中的数据是存储在叶子节点,并且通过链表的方式把叶子节点中的数据进行连接。
b.B+树的子路数量等于关键字数
(如图所示)这个是B树的存储结构,从B树上可以看到每个节点会存储数据。

(如图所示)这个是B+树,B+树的所有数据是存储在叶子节点,并且叶子节点的数据是用双向链表关联的。

2.B树和B+树,一般都是应用在文件系统和数据库系统中,用来减少磁盘IO带来的性能损耗。
以Mysql中的InnoDB为例,当我们通过select语句去查询一条数据时,InnoDB需要从磁盘上去读取数据,这个过程会涉及到磁盘IO以及磁盘的随机IO(如图所示)我们知道磁盘IO的性能是特别低的,特别是随机磁盘IO。
因为磁盘IO的工作原理是,首先系统会把数据逻辑地址传给磁盘,磁盘控制电路按照寻址逻辑把逻辑地址翻译成物理地址,也就是确定要读取的数据在哪个磁道,哪个扇区。
为了读取这个扇区的数据,需要把磁头放在这个扇区的上面,为了实现这一个点,磁盘会不断旋转,把目标扇区旋转到磁头下面,使得磁头找到对应的磁道,这里涉及到寻道事件以及旋转时间。

很明显磁盘IO这个过程的性能开销是非常大的,特别是查询的数据量比较多的情况下。
所以在InnoDB中,干脆对存储在磁盘块上的数据建立一个索引,然后把索引数据以及索引列对应的磁盘地址,以B+树的方式来存储。
如图所示,当我们需要查询目标数据的时候,根据索引从B+树中查找目标数据即可,由于B+树分路较多,所以只需要较少次数的磁盘IO就能查找到。

3.为什么用B树或者B+树来做索引结构?原因是AVL树的高度要比B树的高度要高,而高度就意味着磁盘IO的数量。所以为了减少磁盘IO的次数,文件系统或者数据库才会采用B树或者B+树。
相关文章:
大厂面试题-b树和b+树的理解
为了更清晰的解答这个问题,从三个方面来回答: a.了解二叉树、AVL树、B树的概念 b.B树和B树的应用场景 1.B树是一种多路平衡查找树,为了更形象的理解,我们来看这张图。 二叉树,每个节点支持两个分支的树结构ÿ…...
NeRF-SLAM部署运行(3060Ti)
记录在部署运行期间遇到的一些问题,分享给大家~ 一、环境 RTX 3060 Ti、8G显存、Ubuntu18.04 二、部署 1. 下载代码 git clone https://github.com/jrpowers/NeRF-SLAM.git --recurse-submodules git submodule update --init --recursive cd thirdparty/insta…...
零基础编程入门教程软件推荐,零基础编程自学
零基础编程入门教程软件推荐,零基础编程自学 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件,象如图这个实例就是用…...
Amazon EC2 安全可调用的云虚拟主机服务器
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Amazon EC2 打造全新的科技链 Amazon Elastic Compute Cloud(Amazon EC2)提供最广泛、最深入的计算平台,拥有超过 500 个实例&…...
HTTP/HTTPS、SSL/TLS、WS/WSS 都是什么?
有同学问我,HTTP/HTTPS、SSL/TLS、WS/WSS 这都是些什么?那我们就先从概念说起: HTTP 是超文本传输协议,信息是通过明文传输。HTTPS 是在 HTTP 的基础上信息通过加密后再传输。SSL 是实现 HTTPS 信息传输加密的算法。TLS 是 SSL 的…...
软考之系统安全理论基础+例题
系统安全 系统安全性分析与设计 作为全方位的、整体的系统安全防范体系也是分层次的,不同层次反映了不同的安全问题,根据网络的应用现状情况和结构,可以将安全防范体系的层次划分为 物理层安全系统层安全网络层安全应用层安全安全管理。 …...
棱镜七彩亮相工控中国大会,以软件供应链安全助力新型工业化高质量发展
2023年11月1日-3日,2023第三届工控中国大会在苏州国际会议中心举办,本届大会由中国电子信息产业发展研究院、中国工业经济联合会、国家智能制造专家委员会、国家产业基础专家委员会、江苏省工业和信息化厅、江苏省国有资产监督管理委员会、苏州市人民政府…...
数据可视化:动态柱状图
终于来到最后一个数据可视化的文章拿啦~~~ 在这里学习如何绘制动态柱状图 我先整个活 (๑′ᴗ‵๑)I Lᵒᵛᵉᵧₒᵤ❤ 什么是pyecharts? 答: Python的Pyecharts软件包。它是一个用于Python数据可视化和图表绘制的库,可用于制作…...
vue3 自定义loading
使用antdv 后发现只有button支持loaidng属性,而其他元素不能使用loading来显示是否加载中,需要套一层 a-spin 才能支持,非常不方便。 所以写了个自定义的指令来进行处理 新建loading.vue文件用来页面显示 <template><div class&q…...
Ceph-deploy跳过gpg-key验证(离线环境安装Ceph)
问题 CentOS-7.6.1810离线环境搭建Ceph环境时出现gpg-key安装源公钥检查错误。原因是执行ceph-deploy install 命令的服务器无法访问互联网。具体报错如下图: 解决 安装命令后新增--no-adjust-repos参数即可跳过安装 GPG 密钥。 命令如下: ceph-deplo…...
想入行单片机开发的学生们的忠告
想入行单片机开发的学生们的忠告 做嵌入式单片机开发十来年。想给那些想入行单片机开发的同学一些建议。 1.想做这行,做好坚持学习的准备。最近很多小伙伴找我,说想要一些单片机的资料,然后我根据自己从业十年经验,熬夜搞了几个通…...
【番外篇】C++语法学习笔记
学习目标:C的一些高级操作 根据C菜鸟教程自学的笔记,大家有想学习C的话可以根据这个网站进行学习。这个推荐有一定基础的再去进行自学。新手的话还是建议直接看一些视频跟着学 学习内容: 1. 运算符重载 说到C中的运算符重载,首…...
js 字符串转数字
在 JavaScript 中,可以使用以下方法将字符串转换为数字: parseInt parseInt():将字符串转换为整数。它会从字符串的开头开始解析,直到遇到非数字字符为止。如果第一个字符不能转换为数字,则返回 NaN。 let str &qu…...
【NI-DAQmx入门】外部采样时钟相关
1.时钟的作用 时钟在几乎所有测量系统中都起着至关重要的作用。通过硬件定时测量,时钟控制采样或更新的发生时间。与依赖软件计时测量相比,您可以选择硬件定时测量来实现采样或更新之间更一致的时间间隔。以数模转换器特性分析为例。该应用由三个基本部分…...
Amazon EC2 Hpc7g 实例现已在更多区域推出
即日起,Amazon Elastic Compute Cloud (Amazon EC2) Hpc7g 实例将在亚太地区(东京)、欧洲地区(爱尔兰)和 Amazon GovCloud(美国西部)区域推出。Amazon EC2 Hpc7g 实例由 Amazon Graviton 处理器…...
【开题报告】基于SpringBoot的药店药品管理系统的设计与实现
1.研究背景 随着人们对健康的日益关注和医疗技术的不断进步,药店在人们生活中的重要性越来越凸显。药店承担着提供药品和健康咨询等服务的角色,而药品管理是药店运营的核心内容之一。传统的药店药品管理往往依赖人工操作,存在着信息不透明、…...
Promise用法详解
文章目录 一、异步代码的困境1.异步任务的处理 二、认识Promise作用1.什么是Promise呢?2.Promise的代码结构 三、Promise状态变化1.Executor2.resolve不同值的区别3.then方法 – 接受两个参数4.then方法 – 多次调用5.then方法 – 返回值6.catch方法 – 多次调用7.c…...
7.spark sql编程
概述 spark 版本为 3.2.4,注意 RDD 转 DataFrame 的代码出现的问题及解决方案 本文目标如下: RDD ,Datasets,DataFrames 之间的区别入门 SparkSession创建 DataFramesDataFrame 操作编程方式运行 sql 查询创建 DatasetsDataFrames 与 RDDs 互相转换 使用…...
【2023】COMAP美赛数模中的大型语言模型LLM和生成式人工智能工具的使用
COMAP比赛中的大型语言模型和生成式人工智能工具的使用 写在最前面GitHub Copilot工具 说明局限性 团队指南引文和引用说明人工智能使用报告 英文原版 Use of Large Language Models and Generative AI Tools in COMAP ContestslimitationsGuidance for teamsCitation and Refe…...
数据结构-顺序表学习资料
什么是顺序表? 顺序表是一种线性数据结构,它按照元素在内存中的物理顺序存储数据。顺序表可以通过数组实现,也可以通过链表和动态数组实现。 顺序表的特点 元素连续存储:顺序表中的元素在内存中是连续存储的,这样可…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
