当前位置: 首页 > news >正文

2 任务2: 使用趋动云GPU进行猫狗识别实践

使用趋动云GPU进行猫狗识别实践

  • 1 创建项目
  • 2 初始化开发环境
  • 3 调试代码
  • 4 提交离线任务
  • 5 结果集存储与下载

使用趋动云提供的免费GPU,进行猫狗识别实践。
虽然例程里面提供的是基于tensorflow的,但是你也可以使用pytorch的代码
使用这个平台的一个优点就是方便,各种环境等等应有尽有;还有一些常见的数据集。

1 创建项目

1.进入趋动云用户工作台,在当前空间处选择注册时系统自动生成的空间(其他空间无免费算力);
image.png
2.填写项日名称及项目描述,如图二所示:
image.png
3.添加镜像:选择含TensorFlow2.X框架的官方镜像即可,如图三所示;
image.png
4.添加绑定数据集:选择公开数据集,DogsVsCats。
image.png
5.其余无需填写,点击右下角创建,系统弹出上传代码的提示,单击暂不上传,项目创建成功。

2 初始化开发环境

1,下载代码:
飞书文档连接:到第三章step1下载:
https://nuly9zxzf1.feishu.cn/docx/HOmzdmST9oc43gxjTF0c7PAAnnb

2,初始化开发环境:
图四:单击右上角的运行代码,进入初始化开发环境页;
图五:填写开发环境的初始化配置;
image.png

image.png

image.png

image.png

3 调试代码

开发环境创建好后,您可在开发环境中调试代码。
1.单击开发环境实例页右侧的JupyterLab工具。
2.默认进入/gemini/目录下,在右侧目录树中单击code文件夹,进入到/gemini/code/目录下。
image.png

image.png

3.单击顶部网页终端按钮,进入终端界面。
image.png

4.在网页终端运行如下代码
运行:

python $GEMINI_RUN/DogsVsCats.py --num_epochs 5 --data_dir $GEMINI_DATA_IN1/DogsVsCats/ --train_dir $GEMINI_DATA_OUT

系统返回一系列信息,直到返回test accuracy信息,如下所示,表明该模型测试结束,其识别猫狗的能力为
0.500000,即几乎无识别能力.

5.单击JupyterLab,切换回JupyterLab工具,分析/gemini/code/路径下的模型代码。
经排查,发现代码中没有打乱数据集进行训川练,导致模型没有训练成功。这是因为模型在一个batch.之中,只曰
能看到猫的类别和狗的类别,这样看不到另一个类别的信息,所以没有任何识别能力。

6.修改模型代码并保存。
a.双击/gemini/code/路径下的DogsVsCats.py,开始编辑该文件。
b.删除该文件中第44行的注释符号#。
c,保存

7.单击网页终端按钮,进入终端界面再次执行上述4中的命令进行识别能力的测试。
系统返回的测试结果如下所示,显然已经能达到85%能识别出猫狗了。
image.png

4 提交离线任务

当您已经完成本次调优,可参考如下步骤保存代码并使用当前版本代码提交训练任务。
1.单击调试页面右上角的提交训练任务。
2.在单框中选择镜像和代码版本。
a.选择代码版本:单击新建代码版本,并在右边框中填写代码版本名。
b.选择镜像:选择直接使用当前工作镜像。

image.png
image.png

3.单击确定,进入提交任务页面。参考如下说明配置任务基本信息。
a.配置说明,其余保持默认即可。
i.任务模型:单机任务;
ii.GPU选择:B1.2 xlarge【需选择2Gpu的配置】
iii.启动命令
执行代码中的DogsVsCats.py脚本启动训练,训练所需数据为 G E M I N I D A T A I N 1 / D o g s V s C a t s 目录下的数据,训练结果保存在 GEMINI_DATA_IN1/DogsVsCats目录下的数据,训练结果保存在 GEMINIDATAIN1/DogsVsCats目录下的数据,训练结果保存在GEMINI_DATA_OUT目录下。执行该任务的启动命令如下:

python $GEMINI_RUN/DogsVsCats.py --num_epochs 5 --data_dir $GEMINI_DATA_IN1/DogsVsCats/ --train_dir $GEMINI_DATA_OUT

image.png

4.配置信息填写完成后,单击确定。
返回训练任务页面,在训练任务列表中查看该任务的状态,该任务大约5分钟即可训练完成。
·任务状态显示为成功则表示训练任务成功结束。
·任务状态为失败,可将鼠标悬置于失败字样上,查看失败原因。

image.png

5 结果集存储与下载

模型在经历了大规模数据的训练后,将具备相对精准的识别猫狗的能力,此时可下载模型并将模型部署到应用中。
趋动云平台提供了结果集存储与下载的功能,您在代码中设置的输出,都将被存储在结果集中。您可将结果集中的
模型文件导出为模型。

1.在左侧导航栏中选择结果,默认进入任务结果页面。
image.png

2.单击右上角的导出模型按钮,进入导出模型页面

image.png
image.png

3.单击创建,生成模型。
生成的模型将保存在平台中,您可将其公开性设置为公开,并将其分享给其他成员使用或进一步完善模型。

相关文章:

2 任务2: 使用趋动云GPU进行猫狗识别实践

使用趋动云GPU进行猫狗识别实践 1 创建项目2 初始化开发环境3 调试代码4 提交离线任务5 结果集存储与下载 使用趋动云提供的免费GPU,进行猫狗识别实践。 虽然例程里面提供的是基于tensorflow的,但是你也可以使用pytorch的代码 使用这个平台的一个优点就是…...

技术分享 | app自动化测试(Android)--显式等待机制

WebDriverWait类解析 WebDriverWait 用法代码 Python 版本 WebDriverWait( driver,timeout,poll_frequency0.5,ignored_exceptionsNone) 参数解析: driver:WebDriver 实例对象 timeout: 最长等待时间,单位秒 poll_frequency: 检测的间…...

机器学习基础之《回归与聚类算法(5)—分类的评估方法》

问题:上一篇的案例,真的患癌症的,能被检查出来的概率? 一、精确率和召回率 1、混淆矩阵 在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适…...

如何在macbook上删除文件?Mac删除文件的多种方法

在使用MacBook电脑时,桌面上经常会积累大量的文件,而这些文件可能已经不再需要或已经过时。为了保持桌面的整洁和提高电脑性能,我们需要及时删除这些文件。本文将介绍MacBook怎么删除桌面文件,以及macbook删除桌面文件快捷键。 一…...

Java代码Demo——Map根据key或value排序

Map根据key排序 升序 Demo代码&#xff1a; //使用TreeMap Map<Integer, String> map new TreeMap<>(); map.put(10, "第10名次"); map.put(15, "第15名次"); map.put(1, "第1名次"); map.put(5, "第5名次"); map.put…...

一个Linux自动备份脚本的示例

一个简单的Linux自动备份脚本的示例&#xff0c;根据需要进行自定义&#xff1a; 请确保按照您的需求修改source_dir和backup_dir为要备份的源目录和备份目录的路径。此脚本使用tar命令创建一个以当前日期命名的压缩备份文件&#xff0c;并在备份完成后检查是否成功。此外&…...

[论文阅读]PV-RCNN++

PV-RCNN PV-RCNN: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection 论文网址&#xff1a;PV-RCNN 论文代码&#xff1a;PV-RCNN 简读论文 这篇论文提出了两个用于3D物体检测的新框架PV-RCNN和PV-RCNN,主要的贡献如下: 提出P…...

测试老鸟整理,Postman加密接口测试-Rsa/Aes对参数加密(详细总结)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 一些问题 postma…...

JavaScript使用对象

对象(object)是最基本、最通用的类型&#xff0c;具有复合性结构&#xff0c;属于引用型数据&#xff0c;对象的结构具有弹性&#xff0c;内部的数据是无序的&#xff0c;每个成员被称为属性。在JavaScript中&#xff0c;对象是一个泛化的概念&#xff0c;任何值都可以转换为对…...

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例 散射参数矩阵有实际的物理意义&#xff0c;但是其无法级联计算&#xff0c;但是ABCD参数和传输散射矩阵可以级联计算&#xff0c;在此先简单介绍ABCD参数矩阵的基本用法。 1、微带线的ABCD矩阵的推导 其他的一些常用的二端…...

“网站不安全”该如何解决

当我们的网站被客户访问的时候&#xff0c;经常会出现提示不安全的情况&#xff0c;导致客户的不信任&#xff0c;从而出现客户流失的现象&#xff0c;这种情况我们应该如何解决呢&#xff1f; 首先&#xff0c;我们要确定网站会出现不安全的原因&#xff0c;一般来说&#xff…...

gitlab数据备份和恢复

gitlab数据备份 sudo gitlab-rake gitlab:backup:create备份文件默认存放在/var/opt/gitlab/backups路径下&#xff0c; 生成1697101003_2023_10_12_12.0.3-ee_gitlab_backup.tar 文件 gitlab数据恢复 sudo gitlab-rake gitlab:backup:restore BACKUP1697101003_2023_10_12_…...

嵌入式Linux和stm32区别? 之间有什么关系吗?

嵌入式Linux和stm32区别? 之间有什么关系吗&#xff1f; 主要体现在以下几个方面&#xff1a; 1.硬件资源不同 单片机一般是芯片内部集成flash、ram&#xff0c;ARM一般是CPU&#xff0c;配合外部的flash、ram、sd卡存储器使用。最近很多小伙伴找我&#xff0c;说想要一些嵌…...

【Redis】String字符串类型-内部编码使用场景

文章目录 内部编码使用场景缓存功能计数功能共享会话手机验证码 内部编码 字符串类型的内部编码有3种&#xff1a; int&#xff1a;8个字节&#xff08;64位&#xff09;的⻓整型&#xff0c;存储整数embstr&#xff1a;压缩字符串&#xff0c;适用于表示较短的字符串raw&…...

电脑发热发烫,具体硬件温度达到多少度才算异常?

环境&#xff1a; 联想E14 问题描述&#xff1a; 电脑发热发烫,具体硬件温度达到多少度才算异常? 解决方案&#xff1a; 电脑硬件的温度正常范围会因设备类型和使用的具体硬件而有所不同。一般来说&#xff0c;以下是各种硬件的正常温度范围&#xff1a; CPU&#xff1a;正…...

计算机网络第4章-IPv6和寻址

IP地址的分配 为了获取一块IP地址用于一个组织的子网内&#xff0c;于是我们向ISP联系&#xff0c;ISP则会从已分给我们的更大 地址块中提供一些地址。 例如&#xff0c;ISP也许已经分配了地址块200.23.16.0/20。 该ISP可以依次将该地址块分成8个长度相等的连续地址块&…...

Lazarus安装和入门资料

azarus-2.2.6-fpc-3.2.2-win64 下载地址 Lazarus 基础教程 - Lazarus Tutorials for Beginners Lazarus Tutorial #1 - Learning programming_哔哩哔哩_bilibili https://www.devstructor.com/index.php?pagetutorials Lazarus是一款开源免费的object pascal语言RAD IDE&…...

mediapipe流水线分析 二

目标检测 Graph 一 流水线上游输入处理 1 TfLiteConverterCalculator 将输入的数据转换成tensorflow api 支持的Tensor TfLiteTensor 并初始化相关输入输出节点 &#xff0c;该类的业务主要通过 interpreter std::unique_ptrtflite::Interpreter interpreter_ nullptr; 实现…...

1.性能优化

概述 今日目标&#xff1a; 性能优化的终极目标是什么压力测试压力测试的指标 性能优化的终极目标是什么 用户体验 产品设计(非技术) 系统性能(快&#xff0c;3秒不能更久了) 后端&#xff1a;RT,TPS,并发数 影响因素01&#xff1a;数据库读写&#xff0c;RPC&#xff…...

使用Plsql+oracle client 连接 Oracle数据库

2011年入职老东家X煤集团的时候&#xff0c;在csnd上写了一篇blog&#xff0c;题目叫“什么是ERP”&#xff0c;从此跳入DBA了这个烂坑&#xff0c;目前公司的数据库一部分是Oracle&#xff0c;另一部分是MySQL的&#xff0c;少量MSSQL&#xff0c;还需要捡起来一部分&#xff…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...