当前位置: 首页 > news >正文

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着通信行业的快速发展和市场竞争的日益激烈,营业厅作为通信公司的重要服务窗口,其服务质量和运营效率直接影响到公司的形象和业绩。为了提高营业厅的运营效能和服务质量,建立一个营业厅营业效能监控平台,对营业厅的各项运营数据进行实时监测和分析,变得至关重要。

当前,一些通信公司门店已经尝试使用一些数据分析和监控工具来监测其营业厅的运营数据。然而,这些工具往往存在一些问题,如:
数据不齐全:现有工具往往只能提供部分营业厅的数据监测和分析,无法覆盖营业厅的所有运营数据。
数据不及时:由于数据采集和处理的制约,现有工具往往无法实时更新数据,使得数据分析的结果无法反映营业厅运营情况。
分析不深入:现有的工具往往只能提供基础的数据统计和分析,而无法进行深入的数据挖掘和趋势预测,从而无法为决策提供有力的支持。
因此,建立一个实时、深入的营业厅营业效能监控平台,仍然具有必要性和现实意义。

本课题的研究目的是建立一个营业厅营业效能监控平台,通过实时采集、处理和分析营业厅的各项运营数据,提供准确、及时的数据支持,以帮助通信公司更好地了解营业厅的运营状况、提高服务质量、优化资源配置。具体来说,本课题将实现以下目标:
实现数据的采集和实时更新,反映所有营业厅的运营状况;
实现数据的处理和分析,提供各种指标的统计和可视化;
实现数据的深入挖掘和趋势预测,为决策提供有力的支持;
提供一个友好的用户界面,方便用户进行数据查询和操作。

本课题的研究意义在于为通信公司提供一种便捷、准确、实时的营业厅营业效能监控平台,从而帮助通信公司更好地了解营业厅的运营状况和服务质量,优化资源配置和提高服务水平。具体来说,本课题的意义包括:
提高服务质量:通过实时监控营业厅的运营数据和服务质量,通信公司可以及时发现并解决存在的问题,提高客户满意度和服务质量。
优化资源配置:通过对营业厅的运营数据进行分析和处理,通信公司可以了解各营业厅的客流量、业务类型、服务需求等情况,从而优化资源配置和服务流程,提高公司的运营效率。
提高决策效率:通过实时数据监测和分析,通信公司可以更加准确地了解市场趋势和消费者需求,从而更加准确地制定营销策略和投资计划,提高决策效率和准确性。
增强竞争力:通过建立便捷的营业厅营业效能监控平台,通信公司可以更好地了解市场趋势和消费者需求,优化资源配置和提高服务水平,从而增强竞争力。同时,这种数据驱动的决策方式也可以提高公司的透明度和诚信度,增强公司的社会责任感和品牌形象。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 基于大数据的营业厅营业效能监控平台界面展示:
    基于大数据的营业厅营业效能监控平台
    基于大数据的营业厅营业效能监控平台-门店历史受理详情
    基于大数据的营业厅营业效能监控平台-耗时步骤分析
    基于大数据的营业厅营业效能监控平台-门店基本信息
    基于大数据的营业厅营业效能监控平台-门店台席健康度
    基于大数据的营业厅营业效能监控平台-营业员受理详情

四、部分代码设计

  • 大数据项目实战-代码参考:
# 根据区县找出所对应的省份和城市
def cun(address_str):res_dict = {'province': '', 'city': '', 'county': ''}lit = []for k,v in area_data.items():for city_county_dict in v:for x,y in city_county_dict.items():# print(x,y)for j in y:if address_str.find(j) != -1:lit.append({'id': address_str.find(j), 'value': j})elif address_str.find(j) == -1:if address_str.find('河北区') != -1:if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})elif address_str.find('河北区') == -1:if '河北区' in y:y.remove('河北区')if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})lit.sort(key=lambda x: x['id'])# print(lit)if lit:for k, v in area_data.items():for city_county_dict in v:for x, y in city_county_dict.items():for j in y:if lit[0]['value'].find(j) != -1:res_dict['province'] = kres_dict['city'] = xres_dict['county'] = jreturn res_dictreturn res_dictdef create_main(address_str):address_str = address_str.replace('汽车', '')if address_str.find('乌鲁木齐县') != -1 and address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '乌鲁木齐县']if address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '']if address_str.find('沙市区') != -1:return ['湖北', '荆州', '沙市区']if address_str.find('灌南县') != -1:return ['江苏', '连云港', '灌南县']if address_str.find('张家港') != -1:return ['江苏', '苏州', '张家港市']if address_str.find('邯郸县') != -1:return ['河北', '邯郸', '邯郸县']if address_str.find('朝阳区') != -1:return ['北京', '北京', '朝阳区']if address_str.find('南昌县') != -1:return ['江西', '南昌', '南昌县']if address_str.find('芜湖县') != -1:return ['安徽', '芜湖', '芜湖县']if address_str.find('让胡路区') != -1:return ['黑龙江', '大庆', '让胡路区']if address_str.find('瑞安市') != -1:return ['浙江', '温州', '瑞安市']if address_str.find('丰泽区') != -1:return ['福建', '泉州', '丰泽区']if address_str.find('平阳县') != -1:return ['浙江', '温州', '平阳县']if address_str.find('乐清市') != -1:return ['浙江', '温州', '乐清市']if address_str.find('余姚市') != -1:return ['浙江', '宁波', '余姚市']if address_str.find('慈溪市') != -1:return ['浙江', '宁波', '慈溪市']if address_str.find('宁海县') != -1:return ['浙江', '宁波', '宁海县']if address_str.find('镇海区') != -1:return ['浙江', '宁波', '镇海区']if address_str.find('黄岩区') != -1:return ['浙江', '台州', '黄岩区']if address_str.find('头陀镇') != -1:return ['浙江', '台州', '头陀镇']if address_str.find('椒江区') != -1:return ['浙江', '台州', '椒江区']if address_str.find('义乌市') != -1:return ['浙江', '金华', '义乌']if address_str.find('温岭市') != -1:return ['浙江', '台州', '温岭']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('路桥') != -1:return ['浙江', '台州', '路桥区']if address_str.find('路南区') == -1 and address_str.find('唐山') == -1:if address_str.rfind('路') != -1:address_str = address_str.replace(address_str[address_str.rfind('路') - 2:], '')if address_str.rfind('岸') != -1:address_str = address_str.replace(address_str[address_str.rfind('岸') - 2:], '')if address_str.find('道里区') == -1:if address_str.rfind('道') != -1:address_str = address_str.replace(address_str[address_str.rfind('道') - 3:], '')a = pro_cty_cun(address_str)b = cty_cun(address_str)c = cun(address_str)# print(a)# print(b)# print(c)if a['province'] != '' and c['province'] != '' and a['city'] == '' and b['city'] == '' and a['province'] == c['province']:# print(1)return list(c.values())if a['province'] != '' and b['province'] != '' and a['province'] == b['province'] and a['city'] != '' and b['city'] != '' and a['city'] == b['city'] and b['county'] != a['county']:return list(b.values())if a['province'] != '':return list(a.values())if b['province'] != '':return list(b.values())if c['province'] != '':return list(c.values())else:return ['', '', '']print(create_main('临沂颐高上海街'))#调用函数total_value=[]
for value in df['位置'].tolist():total_value.append(create_main(value))split_data= pd.DataFrame(total_value,columns=['省','市','区H'])#拼接
df_new_data= pd.concat([df,split_data],axis=1)
df_new_data.loc[:,'位置2']=df_new_data['省']+df_new_data['市']+df_new_data['区H']
ad_split=cpca.transform(df_new_data['位置2'])[['省','市','区','adcode']]df_new_data=df_new_data[['省级', '城市' , '已有经销商名称','已有门店名称','数量',  '区H', '位置2']].copy()
df_gyh=pd.concat([df_new_data,ad_split],axis=1)df_gyh.columns=['省份', '城市','经销商名称', '门店名称','门店数量', '区H','位置', '省', '市', '区', 'adcode']
# df_gyh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx')df_1=pd.read_excel(r'D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx',converters={'Unnamed: 0':str,'adcode':str})
df_sh=pd.read_excel(r'D:\门店数据清洗\省份.xls')df_1=df_1[['Unnamed: 0','经销商名称','门店名称','门店数量','区H', '位置', '省', '市', '区', 'adcode']].copy()
df_1_sh=pd.merge(df_1,df_sh,left_on='省',right_on='省份',how='left')df_1_sh.loc[:,'门店id']=df_1_sh['省编码']+'-c'+df_1_sh['adcode']+'-'+df_1_sh['Unnamed: 0']new_columns=df_1_sh.columns.tolist()
new_columns1=['门店id', '省','市','区H','经销商名称','门店名称','位置','门店数量', '省编码', 'adcode', '省份','区', 'Unnamed: 0'
#               ,'门店名称1']#调整各列的位置
df_1_sh=df_1_sh.reindex(columns=new_columns1).copy()
df_1_sh=df_1_sh[['门店id', '省', '市', '区','经销商名称', '门店名称', '位置', '门店数量', '省编码',  'adcode']]#确认门店id是否唯一
print(df_1_sh[df_1_sh['门店id'] .isnull()])
# df_1_sh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后加门店id(高英华).xlsx',index=False)

五、论文参考

  • 计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考:
    计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考

六、系统视频

基于大数据的营业厅营业效能监控平台-项目视频:

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop

结语

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

相关文章:

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

CSS的Grid布局与Flex布局

Grid布局 Grid布局是一种CSS布局模式,它使用一个二维的网格系统来定位元素。它允许您将容器分为行和列,然后将元素放置在特定的行和列中。Grid布局非常适合创建复杂的网页布局和对齐元素。 以下是grid布局的基本语法: .container { displ…...

常见React Hooks 钩子函数用法

一、useState useState()用于为函数组件引入状态(state)。纯函数不能有状态,所以把状态放在钩子里面。 import React, { useState } from react import ./Button.cssexport function UseStateWithoutFunc() {const [name, setName] useStat…...

AlGaN/GaN HEMT 中缓冲区相关电流崩溃的缓冲区电位模拟表征

标题:Characterization of Buffer-Related Current Collapse by Buffer Potential Simulation in AlGaN/GaN HEMTs 来源:IEEE TRANSACTIONS ON ELECTRON DEVICES (18年) 摘要 - 在本文中,通过使用脉冲 I-V 测量和二维漂移扩散模拟研究了 Al…...

深入理解ClickHouse跳数索引

一、跳数索引​ 影响ClickHouse查询性能的因素很多。在大多数场景中,关键因素是ClickHouse在计算查询WHERE子句条件时是否可以使用主键。因此,选择适用于最常见查询模式的主键对于表的设计至关重要。 然而,无论如何仔细地调优主键&#xff…...

ElasticSearch中实际操作细节点

ElasticSearch中的细节点 文章目录 ElasticSearch中的细节点1、提示:1.1 ElasticSearch相关文档:1.2 Kibana的常用快捷键1.3 kibana的注释方式 2、term与terms的用法以及区别3、ElasticSearch中"index":"false","doc_values&qu…...

VCG 获取指定面片与顶点的索引

文章目录 一、介绍二、实现代码三、实现效果参考资料一、介绍 VCG Lib存在许多中方式对Mesh数据进行编码,其中最为常用的为顶点+三角形(比如三角形网格以及四面体网格)。VCG关于Mesh的定义如下所示: vcg::tri::TriMesh 包含顶点的容器类型(通常是std::vector),具体的顶点…...

开发知识点-Django

Django 1 了解简介2 Django项目结构3 url 地址 和视图函数4 路由配置5 请求及响应6 GET请求和POST请求查询字符串 7 Django设计模式及模板层8 模板层-变量和标签9 模板层-过滤器和继承继承 重写 10 url反向解析11 静态文件12 Django 应用及分布式路由创建之后 注册 一下 13 模型…...

Linux系统笔记参考

Linux系统笔记 一、基本命令 1、简单的几个命令 ls:显示指定目录下的文件目录清单(list) cd:切换目录,改变当前的工作目录(change directory) cd ~ 或 cd 切换到用户主目录(用户家…...

AI:62-基于深度学习的人体CT影像肺癌的识别与分类

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…...

数字孪生智慧工厂3D无代码编辑工具提供强大、简单功能

相比传统的2D/2.5D,3d可视化场景脱颖而出,成为更多行业的首选,然而传统的3D可视化场景制作需要花费大量的人力财力及周期来创建复杂的3D模型和场景,对很多企业及个人来说是个挑战,3D可视化场景编辑器通过简单的拖拉拽&…...

python 为什么这么受欢迎?python的优势到底在哪里?

常言道:“流水的语言,铁打的Python”,目前它可以说是已经"睥睨天下,傲视群雄"了。它天生丽质,易于读写,非常实用,从而赢得了广泛的群众基础,被誉为"宇宙最好的编程语言"&am…...

Flutter转换png图片为jpg图片

1.需求 在xxx产品需求中,需要将png图片转为jpg图片。 2.引用库 image: ^4.1.3 Dart图像库提供了以各种图像文件格式加载、保存和操作图像的功能。 该库可以与dart:io和dart:html一起用于命令行、Flutter和web应用程序。 注:4.0是该库先前版本的主要修订…...

c++ grpc 第一个用例

一、linux 包管理工具安装 sudo apt-get update sudo apt-get install -y build-essential autoconf libtool pkg-config cmake sudo apt-get install -y libgflags-dev libgtest-dev sudo apt-get install -y clang libc-dev# 安装 gRPC C 相关依赖 sudo apt-get install -y …...

pandas笔记:读写excel

1 读excel read_excel函数能够读取的格式包含:xls, xlsx, xlsm, xlsb, odf, ods 和 odt 文件扩展名。 支持读取单一sheet或几个sheet。 1.0 使用的数据 1.1 主要使用方法 pandas.read_excel(io, sheet_name0, header0, namesNone, index_colNone, usecolsNon…...

【ES分词】

分词 #测试分词器 POST /_analyze {"text": "小米手机和华为手机都是国产mobilephone", "analyzer": "english" }不管analyzer是改成:standard还是chinese都无法实现中文分词。 处理中文分词一般采用IK分词器 安装链接&…...

Git设置显示中文

git config --global i18n.comitencoding utf-8 git config --global i18n.logoutputencoding utf-8 export LESSCHARSETutf-8...

数实结合的复杂电磁环境构建解决方案

数实结合的复杂电磁环境构建解决方案 数实结合的复杂电磁环境构建 目前无线收发设备面临的电磁环境愈发恶劣。为了检验设备在复杂电磁环境下的实际工作性能,需进行各种应用条件下的测试和试验。外场测试难以提供各种应用环境,存在测试周期长、成本高、难…...

MySQL geometry 类型数据测试

MySQL的geometry类型的表的创建和测试: CREATE TABLE geom_test01( id INT NOT NULL PRIMARY KEY, info varchar(100), geom GEOMETRY ); desc geom_test01; insert into geom_test01 (id,info,geom) values (1, geom, geomfromtext(MULTIPOLYGON(((1 1…...

基于袋獾算法的无人机航迹规划-附代码

基于袋獾算法的无人机航迹规划 文章目录 基于袋獾算法的无人机航迹规划1.袋獾搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用袋獾算法来优化无人机航迹规划。 1.袋獾搜索算法 …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...

智能体革命:企业如何构建自主决策的AI代理?

OpenAI智能代理构建实用指南详解 随着大型语言模型&#xff08;LLM&#xff09;在推理、多模态理解和工具调用能力上的进步&#xff0c;智能代理&#xff08;Agents&#xff09;成为自动化领域的新突破。与传统软件仅帮助用户自动化流程不同&#xff0c;智能代理能够自主执行工…...

初级程序员入门指南

初级程序员入门指南 在数字化浪潮中&#xff0c;编程已然成为极具价值的技能。对于渴望踏入程序员行列的新手而言&#xff0c;明晰入门路径与必备知识是开启征程的关键。本文将为初级程序员提供全面的入门指引。 一、明确学习方向 &#xff08;一&#xff09;编程语言抉择 编…...

无头浏览器技术:Python爬虫如何精准模拟搜索点击

1. 无头浏览器技术概述 1.1 什么是无头浏览器&#xff1f; 无头浏览器是一种没有图形用户界面&#xff08;GUI&#xff09;的浏览器&#xff0c;它通过程序控制浏览器内核&#xff08;如Chromium、Firefox&#xff09;执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...

GitHub 常见高频问题与解决方案(实用手册)

1.Push 提示权限错误&#xff08;Permission denied&#xff09; 问题&#xff1a; Bash Permission denied (publickey) fatal: Could not read from remote repository. 原因&#xff1a; 没有配置 SSH key 或使用了 HTTPS 而没有权限…...