大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive
✨作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目
文章目录
- 一、前言
- 二、开发环境
- 三、系统界面展示
- 四、部分代码设计
- 五、论文参考
- 六、系统视频
- 结语
一、前言
随着通信行业的快速发展和市场竞争的日益激烈,营业厅作为通信公司的重要服务窗口,其服务质量和运营效率直接影响到公司的形象和业绩。为了提高营业厅的运营效能和服务质量,建立一个营业厅营业效能监控平台,对营业厅的各项运营数据进行实时监测和分析,变得至关重要。
当前,一些通信公司门店已经尝试使用一些数据分析和监控工具来监测其营业厅的运营数据。然而,这些工具往往存在一些问题,如:
数据不齐全:现有工具往往只能提供部分营业厅的数据监测和分析,无法覆盖营业厅的所有运营数据。
数据不及时:由于数据采集和处理的制约,现有工具往往无法实时更新数据,使得数据分析的结果无法反映营业厅运营情况。
分析不深入:现有的工具往往只能提供基础的数据统计和分析,而无法进行深入的数据挖掘和趋势预测,从而无法为决策提供有力的支持。
因此,建立一个实时、深入的营业厅营业效能监控平台,仍然具有必要性和现实意义。
本课题的研究目的是建立一个营业厅营业效能监控平台,通过实时采集、处理和分析营业厅的各项运营数据,提供准确、及时的数据支持,以帮助通信公司更好地了解营业厅的运营状况、提高服务质量、优化资源配置。具体来说,本课题将实现以下目标:
实现数据的采集和实时更新,反映所有营业厅的运营状况;
实现数据的处理和分析,提供各种指标的统计和可视化;
实现数据的深入挖掘和趋势预测,为决策提供有力的支持;
提供一个友好的用户界面,方便用户进行数据查询和操作。
本课题的研究意义在于为通信公司提供一种便捷、准确、实时的营业厅营业效能监控平台,从而帮助通信公司更好地了解营业厅的运营状况和服务质量,优化资源配置和提高服务水平。具体来说,本课题的意义包括:
提高服务质量:通过实时监控营业厅的运营数据和服务质量,通信公司可以及时发现并解决存在的问题,提高客户满意度和服务质量。
优化资源配置:通过对营业厅的运营数据进行分析和处理,通信公司可以了解各营业厅的客流量、业务类型、服务需求等情况,从而优化资源配置和服务流程,提高公司的运营效率。
提高决策效率:通过实时数据监测和分析,通信公司可以更加准确地了解市场趋势和消费者需求,从而更加准确地制定营销策略和投资计划,提高决策效率和准确性。
增强竞争力:通过建立便捷的营业厅营业效能监控平台,通信公司可以更好地了解市场趋势和消费者需求,优化资源配置和提高服务水平,从而增强竞争力。同时,这种数据驱动的决策方式也可以提高公司的透明度和诚信度,增强公司的社会责任感和品牌形象。
二、开发环境
- 大数据技术:Hadoop、Spark、Hive
- 开发技术:Python、Django框架、Vue、Echarts、机器学习
- 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机
三、系统界面展示
- 基于大数据的营业厅营业效能监控平台界面展示:






四、部分代码设计
- 大数据项目实战-代码参考:
# 根据区县找出所对应的省份和城市
def cun(address_str):res_dict = {'province': '', 'city': '', 'county': ''}lit = []for k,v in area_data.items():for city_county_dict in v:for x,y in city_county_dict.items():# print(x,y)for j in y:if address_str.find(j) != -1:lit.append({'id': address_str.find(j), 'value': j})elif address_str.find(j) == -1:if address_str.find('河北区') != -1:if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})elif address_str.find('河北区') == -1:if '河北区' in y:y.remove('河北区')if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})lit.sort(key=lambda x: x['id'])# print(lit)if lit:for k, v in area_data.items():for city_county_dict in v:for x, y in city_county_dict.items():for j in y:if lit[0]['value'].find(j) != -1:res_dict['province'] = kres_dict['city'] = xres_dict['county'] = jreturn res_dictreturn res_dictdef create_main(address_str):address_str = address_str.replace('汽车', '')if address_str.find('乌鲁木齐县') != -1 and address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '乌鲁木齐县']if address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '']if address_str.find('沙市区') != -1:return ['湖北', '荆州', '沙市区']if address_str.find('灌南县') != -1:return ['江苏', '连云港', '灌南县']if address_str.find('张家港') != -1:return ['江苏', '苏州', '张家港市']if address_str.find('邯郸县') != -1:return ['河北', '邯郸', '邯郸县']if address_str.find('朝阳区') != -1:return ['北京', '北京', '朝阳区']if address_str.find('南昌县') != -1:return ['江西', '南昌', '南昌县']if address_str.find('芜湖县') != -1:return ['安徽', '芜湖', '芜湖县']if address_str.find('让胡路区') != -1:return ['黑龙江', '大庆', '让胡路区']if address_str.find('瑞安市') != -1:return ['浙江', '温州', '瑞安市']if address_str.find('丰泽区') != -1:return ['福建', '泉州', '丰泽区']if address_str.find('平阳县') != -1:return ['浙江', '温州', '平阳县']if address_str.find('乐清市') != -1:return ['浙江', '温州', '乐清市']if address_str.find('余姚市') != -1:return ['浙江', '宁波', '余姚市']if address_str.find('慈溪市') != -1:return ['浙江', '宁波', '慈溪市']if address_str.find('宁海县') != -1:return ['浙江', '宁波', '宁海县']if address_str.find('镇海区') != -1:return ['浙江', '宁波', '镇海区']if address_str.find('黄岩区') != -1:return ['浙江', '台州', '黄岩区']if address_str.find('头陀镇') != -1:return ['浙江', '台州', '头陀镇']if address_str.find('椒江区') != -1:return ['浙江', '台州', '椒江区']if address_str.find('义乌市') != -1:return ['浙江', '金华', '义乌']if address_str.find('温岭市') != -1:return ['浙江', '台州', '温岭']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('路桥') != -1:return ['浙江', '台州', '路桥区']if address_str.find('路南区') == -1 and address_str.find('唐山') == -1:if address_str.rfind('路') != -1:address_str = address_str.replace(address_str[address_str.rfind('路') - 2:], '')if address_str.rfind('岸') != -1:address_str = address_str.replace(address_str[address_str.rfind('岸') - 2:], '')if address_str.find('道里区') == -1:if address_str.rfind('道') != -1:address_str = address_str.replace(address_str[address_str.rfind('道') - 3:], '')a = pro_cty_cun(address_str)b = cty_cun(address_str)c = cun(address_str)# print(a)# print(b)# print(c)if a['province'] != '' and c['province'] != '' and a['city'] == '' and b['city'] == '' and a['province'] == c['province']:# print(1)return list(c.values())if a['province'] != '' and b['province'] != '' and a['province'] == b['province'] and a['city'] != '' and b['city'] != '' and a['city'] == b['city'] and b['county'] != a['county']:return list(b.values())if a['province'] != '':return list(a.values())if b['province'] != '':return list(b.values())if c['province'] != '':return list(c.values())else:return ['', '', '']print(create_main('临沂颐高上海街'))#调用函数total_value=[]
for value in df['位置'].tolist():total_value.append(create_main(value))split_data= pd.DataFrame(total_value,columns=['省','市','区H'])#拼接
df_new_data= pd.concat([df,split_data],axis=1)
df_new_data.loc[:,'位置2']=df_new_data['省']+df_new_data['市']+df_new_data['区H']
ad_split=cpca.transform(df_new_data['位置2'])[['省','市','区','adcode']]df_new_data=df_new_data[['省级', '城市' , '已有经销商名称','已有门店名称','数量', '区H', '位置2']].copy()
df_gyh=pd.concat([df_new_data,ad_split],axis=1)df_gyh.columns=['省份', '城市','经销商名称', '门店名称','门店数量', '区H','位置', '省', '市', '区', 'adcode']
# df_gyh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx')df_1=pd.read_excel(r'D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx',converters={'Unnamed: 0':str,'adcode':str})
df_sh=pd.read_excel(r'D:\门店数据清洗\省份.xls')df_1=df_1[['Unnamed: 0','经销商名称','门店名称','门店数量','区H', '位置', '省', '市', '区', 'adcode']].copy()
df_1_sh=pd.merge(df_1,df_sh,left_on='省',right_on='省份',how='left')df_1_sh.loc[:,'门店id']=df_1_sh['省编码']+'-c'+df_1_sh['adcode']+'-'+df_1_sh['Unnamed: 0']new_columns=df_1_sh.columns.tolist()
new_columns1=['门店id', '省','市','区H','经销商名称','门店名称','位置','门店数量', '省编码', 'adcode', '省份','区', 'Unnamed: 0'
# ,'门店名称1']#调整各列的位置
df_1_sh=df_1_sh.reindex(columns=new_columns1).copy()
df_1_sh=df_1_sh[['门店id', '省', '市', '区','经销商名称', '门店名称', '位置', '门店数量', '省编码', 'adcode']]#确认门店id是否唯一
print(df_1_sh[df_1_sh['门店id'] .isnull()])
# df_1_sh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后加门店id(高英华).xlsx',index=False)
五、论文参考
- 计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考:

六、系统视频
基于大数据的营业厅营业效能监控平台-项目视频:
大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop
结语
大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目
相关文章:
大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive
✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...
CSS的Grid布局与Flex布局
Grid布局 Grid布局是一种CSS布局模式,它使用一个二维的网格系统来定位元素。它允许您将容器分为行和列,然后将元素放置在特定的行和列中。Grid布局非常适合创建复杂的网页布局和对齐元素。 以下是grid布局的基本语法: .container { displ…...
常见React Hooks 钩子函数用法
一、useState useState()用于为函数组件引入状态(state)。纯函数不能有状态,所以把状态放在钩子里面。 import React, { useState } from react import ./Button.cssexport function UseStateWithoutFunc() {const [name, setName] useStat…...
AlGaN/GaN HEMT 中缓冲区相关电流崩溃的缓冲区电位模拟表征
标题:Characterization of Buffer-Related Current Collapse by Buffer Potential Simulation in AlGaN/GaN HEMTs 来源:IEEE TRANSACTIONS ON ELECTRON DEVICES (18年) 摘要 - 在本文中,通过使用脉冲 I-V 测量和二维漂移扩散模拟研究了 Al…...
深入理解ClickHouse跳数索引
一、跳数索引 影响ClickHouse查询性能的因素很多。在大多数场景中,关键因素是ClickHouse在计算查询WHERE子句条件时是否可以使用主键。因此,选择适用于最常见查询模式的主键对于表的设计至关重要。 然而,无论如何仔细地调优主键ÿ…...
ElasticSearch中实际操作细节点
ElasticSearch中的细节点 文章目录 ElasticSearch中的细节点1、提示:1.1 ElasticSearch相关文档:1.2 Kibana的常用快捷键1.3 kibana的注释方式 2、term与terms的用法以及区别3、ElasticSearch中"index":"false","doc_values&qu…...
VCG 获取指定面片与顶点的索引
文章目录 一、介绍二、实现代码三、实现效果参考资料一、介绍 VCG Lib存在许多中方式对Mesh数据进行编码,其中最为常用的为顶点+三角形(比如三角形网格以及四面体网格)。VCG关于Mesh的定义如下所示: vcg::tri::TriMesh 包含顶点的容器类型(通常是std::vector),具体的顶点…...
开发知识点-Django
Django 1 了解简介2 Django项目结构3 url 地址 和视图函数4 路由配置5 请求及响应6 GET请求和POST请求查询字符串 7 Django设计模式及模板层8 模板层-变量和标签9 模板层-过滤器和继承继承 重写 10 url反向解析11 静态文件12 Django 应用及分布式路由创建之后 注册 一下 13 模型…...
Linux系统笔记参考
Linux系统笔记 一、基本命令 1、简单的几个命令 ls:显示指定目录下的文件目录清单(list) cd:切换目录,改变当前的工作目录(change directory) cd ~ 或 cd 切换到用户主目录(用户家…...
AI:62-基于深度学习的人体CT影像肺癌的识别与分类
🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…...
数字孪生智慧工厂3D无代码编辑工具提供强大、简单功能
相比传统的2D/2.5D,3d可视化场景脱颖而出,成为更多行业的首选,然而传统的3D可视化场景制作需要花费大量的人力财力及周期来创建复杂的3D模型和场景,对很多企业及个人来说是个挑战,3D可视化场景编辑器通过简单的拖拉拽&…...
python 为什么这么受欢迎?python的优势到底在哪里?
常言道:“流水的语言,铁打的Python”,目前它可以说是已经"睥睨天下,傲视群雄"了。它天生丽质,易于读写,非常实用,从而赢得了广泛的群众基础,被誉为"宇宙最好的编程语言"&am…...
Flutter转换png图片为jpg图片
1.需求 在xxx产品需求中,需要将png图片转为jpg图片。 2.引用库 image: ^4.1.3 Dart图像库提供了以各种图像文件格式加载、保存和操作图像的功能。 该库可以与dart:io和dart:html一起用于命令行、Flutter和web应用程序。 注:4.0是该库先前版本的主要修订…...
c++ grpc 第一个用例
一、linux 包管理工具安装 sudo apt-get update sudo apt-get install -y build-essential autoconf libtool pkg-config cmake sudo apt-get install -y libgflags-dev libgtest-dev sudo apt-get install -y clang libc-dev# 安装 gRPC C 相关依赖 sudo apt-get install -y …...
pandas笔记:读写excel
1 读excel read_excel函数能够读取的格式包含:xls, xlsx, xlsm, xlsb, odf, ods 和 odt 文件扩展名。 支持读取单一sheet或几个sheet。 1.0 使用的数据 1.1 主要使用方法 pandas.read_excel(io, sheet_name0, header0, namesNone, index_colNone, usecolsNon…...
【ES分词】
分词 #测试分词器 POST /_analyze {"text": "小米手机和华为手机都是国产mobilephone", "analyzer": "english" }不管analyzer是改成:standard还是chinese都无法实现中文分词。 处理中文分词一般采用IK分词器 安装链接&…...
Git设置显示中文
git config --global i18n.comitencoding utf-8 git config --global i18n.logoutputencoding utf-8 export LESSCHARSETutf-8...
数实结合的复杂电磁环境构建解决方案
数实结合的复杂电磁环境构建解决方案 数实结合的复杂电磁环境构建 目前无线收发设备面临的电磁环境愈发恶劣。为了检验设备在复杂电磁环境下的实际工作性能,需进行各种应用条件下的测试和试验。外场测试难以提供各种应用环境,存在测试周期长、成本高、难…...
MySQL geometry 类型数据测试
MySQL的geometry类型的表的创建和测试: CREATE TABLE geom_test01( id INT NOT NULL PRIMARY KEY, info varchar(100), geom GEOMETRY ); desc geom_test01; insert into geom_test01 (id,info,geom) values (1, geom, geomfromtext(MULTIPOLYGON(((1 1…...
基于袋獾算法的无人机航迹规划-附代码
基于袋獾算法的无人机航迹规划 文章目录 基于袋獾算法的无人机航迹规划1.袋獾搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用袋獾算法来优化无人机航迹规划。 1.袋獾搜索算法 …...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
