当前位置: 首页 > news >正文

【算法题】最大矩形面积,单调栈解法

力扣:84. 柱状图中最大的矩形

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
在这里插入图片描述

题意很简单,翻译一下就是:求该图中最大矩形的面积。

那么,这道题的思路就是遍历。不过如何高效遍历是一个学问。
这道题我带来单调栈的解法。

单调栈就是在栈中维护一个单调规律的序列。

这道题,我们可以维护一个单调递增的序列。
遇到该元素比栈顶元素小的情况,就把栈顶元素出栈,直到栈顶元素小于该元素,或该栈为空为止。
在这里插入图片描述
在这里插入图片描述

为什么要维护一个单调递增的序列呢?

由于序列是递增的所以,最大矩形会非长容易算出最大矩形的面积。
在这里插入图片描述
以该矩形为例
以2为高的最大矩形是 2 * 4 = 4;
以3为高的最大矩形是3 * 3 = 9;
以4为高的最大矩形是4 * 2 = 8;
以5为高的最大矩形是5 * 1 = 1;

那么有人要问了,有聪明的小脑管们要问了,哎呀。
实际上某些矩形中间还有矩形,并不是真正的递序列,会不会产生影响捏?
在这里插入图片描述

如果原图为这样,那么出栈之后维护的递增图与上图对应。由于中间的4大于3也大于2,所以,中间的矩形应该是最大的,可以把4当成3即可。 我们可以以出栈为契机,计算矩形的面积
以该图我进行解题语言描述:
1: 栈中为空栈,将矩形0入栈。 此时栈中矩形为:0
2: 矩形1的高为4,大于栈顶元素2,将矩形1入栈,此时栈中矩形为 0 ,1
3:矩形2的高为3,3小于栈顶元素的高4,所以将栈顶矩形1出栈,同时计算矩形1高的最大
矩形,为 4 * 1 = 4;同时将3入栈,此时栈中矩形为: 0, 2
4:因为矩形3的高大于栈顶矩形2的高,所以将矩形3入栈,此时栈中矩形为: 0, 2,3
5:因为矩形4的高大于栈顶矩形3的高,所以将矩形4入栈,此时栈中矩形为: 0, 2,3,4
6.此时所有的元素已经入栈完毕,且栈中元素为地址矩形,依次出栈计算所有值即可,最重要的出栈,即出栈到3的时候,不能直接拿4矩形序号减去2徐行序号 + 1,因为2号矩形前面可能还有徐行,应该捡到0矩形之后,2矩形之前。

JAVA代码的实现

class Solution {public int largestRectangleArea(int[] heights) {int maxS = 0;Stack<Integer> st = new Stack<>();//添加矩形入栈for(int i = 0; i < heights.length; i++){if(st.empty() || heights[i] >= heights[st.peek()]){st.push(i);}else{while(!st.empty() && heights[st.peek()] > heights[i]){int tempH2 = heights[st.pop()];if(st.empty()){maxS = Math.max(tempH2 * i,maxS);break;}else {}maxS = Math.max(maxS, (i - st.peek() - 1) * tempH2);}st.push(i);}}//添加完毕,依次出栈if(!st.empty()){int tempH = heights[st.peek()];int tempI = st.pop();if (st.empty()){maxS = Math.max(maxS, tempH);return maxS;}else {maxS = Math.max(maxS, tempH * (tempI - st.peek()));}while(!st.empty()){int tempH2 = heights[st.pop()];if(st.empty()){maxS = Math.max(tempH2 * (tempI + 1),maxS);break;}maxS = Math.max(maxS, (tempI - st.peek()) * tempH2);}}return maxS;}
}

同时该题也有一种取巧的做法,在守卫补两个高度为0的矩形,不影响结果的情况下,可以将流程统计, 即压入最右面的0的时候吧所有的矩形都出栈,所有矩形将出栈完毕,即计算完毕。
JAVA代码实现

	 public int largestRectangleArea(int[] heights) {int res =0 ;int n = heights.length;int[] arr = new int[n+2];//复制数组,首位加0System.arraycopy(heights,0,arr,1,n);Deque<Integer> stack = new ArrayDeque<>();int nOfArr = arr.length;arr[0] = arr[nOfArr-1] = 0;//依次比较入栈for (int i = 0; i < nOfArr; i++) {int h = arr[i];while (!stack.isEmpty() && h < arr[stack.peek()]){int tmph = arr[stack.pop()];res = Math.max(res,tmph * (i - stack.peek() - 1));}stack.push(i);}return res;}

相关文章:

【算法题】最大矩形面积,单调栈解法

力扣&#xff1a;84. 柱状图中最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 题意很简单&#xff0c;翻译一下就是&#xff1a;求该图中…...

活动策划|深度分析年货节活动该如何策划!

四月初&#xff0c;不平凡的初春开始恢复往日的平静。对于新零售行业&#xff0c;疫情的缓解也逐渐平稳生态链的运转。2020年新零售的格局在洗礼后&#xff0c;业务的聚焦点也从前端促销转移到后端履约的体验闭环&#xff0c;同时很大程度的推进企业在危机公关下的应对。618大促…...

Idea启动遇到 Web server failed to start. Port 8080 was already in use. 报错

Idea启动遇到问题-记录 报错英文提示&#xff1a; APPLICATION FAILED TO START Description: Web server failed to start. Port 8080 was already in use. Action: Identify and stop the process that’s listening on port 8080 or configure this application to liste…...

Python3中zip()函数知识点总结

1.引言 在本文中&#xff0c;我将带领大家深入了解Python中的zip()函数&#xff0c;使用它可以提升大家的工作效率。 闲话少说&#xff0c;我们直接开始吧&#xff01; 2. 基础知识 首先&#xff0c;我们来介绍一些基础知识点&#xff1a; Python中的某些数据类型是不可变的…...

过滤器,监听器,拦截器的原理与在Servlet和Spring的应用

在Java Web的开发中&#xff0c;最原始和初期的学习都是从Servlet开始的&#xff0c;Servlet是Java最为耀眼的技术&#xff0c;也是Java EE的技术变革。目前大火主流的框架spring boot也的spring mvc部分也是基于拓展servlet完成的。回到之前的文章spring 实现了对servlet的封装…...

minio spring boot 秒传、分片上传、断点续传文件实现

此处后端使用的是前期封装的自定义starter&#xff0c;具体链接可参考&#xff1a;minio对象存储spring boot starter封装组件 这里主要针对前期封装的组件&#xff0c;做一个简单的应用&#xff0c;前端直传可查看之前的文章 秒传 秒传的逻辑比较简单&#xff0c;在前传上传…...

MTK平台使用Omnipeek分析空口协议讲解

讲解这个之前,我们先来了解下beacon/robe Request/Probe Response 三种帧 beacon帧 信标帧,由AP以一定的时间间隔周期性发出,以此来告诉外界自己无线网络的存在。 Beacon帧作为802.11中一个周期性的帧,Beacon周期调高,对应睡眠周期拉长,故节能(即越来休息100ms再起来…...

string和自动推断类型

欢迎来观看温柔了岁月.c的博客目前设有C学习专栏C语言项目专栏数据结构与算法专栏目前主要更新C学习专栏&#xff0c;C语言项目专栏不定时更新待C专栏完毕&#xff0c;会陆续更新C项目专栏和数据结构与算法专栏一周主要三更&#xff0c;星期三&#xff0c;星期五&#xff0c;星…...

【软件测试】从功能到自动化测试,测试人的进阶之路细节,这些必不可少......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 测试流程&#xff0…...

C语言青蛙跳台阶【图文详解】

青蛙跳台阶前言1. 题目介绍2. 解题思路3. 利用图片来演示青蛙跳台阶的原理4. 如何用C语言实现青蛙跳台阶前言 在本文&#xff0c;我们要与一只活泼可爱的小青蛙合作&#xff0c;带领着它跳上台阶&#xff0c;这个小家伙精力充沛&#xff0c;特别擅长于跳跃。我们要让它做我们的…...

笔记(五)——list容器的基础理论知识

list容器是一个双向链表容器&#xff0c;可以高效地进行插入删除元素&#xff0c;但是不能随机存取元素&#xff08;不支持at()和[]操作符&#xff09;。一、list容器的对象构造方法list对象采用模板类的默认构造形式例如list<T> lst&#xff1b;#include<iostream>…...

浅谈网络中接口幂等性设计问题

所谓幂等性设计&#xff0c;就是说&#xff0c;一次和多次请求某一个资源应该具有同样的副作用。用数学的语言来表达就是&#xff1a;f(x) f(f(x))。 在数学里&#xff0c;幂等有两种主要的定义。 在某二元运算下&#xff0c;幂等元素是指被自己重复运算&#xff08;或对于函数…...

《C Primer Plus》第13章复习题与编程练习

《C Primer Plus》第13章复习题与编程练习复习题1. 下面的程序有什么问题&#xff1f;2. 下面的程序完成什么任务&#xff1f;&#xff08;假设在命令行环境中运行&#xff09;3. 假设程序中有下列语句&#xff1a;4. 编写一个程序&#xff0c;不接受任何命令行参数或接受一个命…...

计算机SCI论文应该怎么作图? - 易智编译EaseEditing

计算机SCI论文&#xff0c;作图时要注意以下几个方面的问题&#xff1a; 1.图片的格式要tiff或者eps&#xff1b; 2.文件大小不能超过10M&#xff1b; 3.长和宽也给出了具体要求&#xff1b; 4.色彩模式要RGB或者灰度图&#xff1b; 5.文中的文字字体和大小&#xff1b; …...

【一】kubernetes集群部署

一、docker环境搭建 1、移除以前docker相关包 sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine2、配置yam源 sudo yum install -y yum-utilssudo yum-config-manager --ad…...

Docker安装Redis

一、拉取镜像 命令&#xff1a;&#xff1a;docker pull <镜像名称>:<版本号> docker pull redis 二&#xff1a;Docker挂载配置文件 挂载&#xff1a;即将宿主的文件和容器内部目录相关联&#xff0c;相互绑定&#xff0c;在宿主机内修改文件的话也随之修改容…...

在shell中执行一条可执行程序(./a.out) 系统执行的过程

目录 系统调度过程 用户空间角度&#xff1a; 内核角度 1、调用fork创建一个新进程 2、使用_fo_fork创建新进程 3、父进程调用wake_up_new_task尝试唤醒新进程 4、CPU选择一个合适的进程来运行&#xff1b; 5、运行新进程 6、实现负载均衡 系统调度过程 分析在命令行…...

【ArcGIS Pro二次开发】(10):属性表字段(field)的修改

在ArcGIS Pro中&#xff0c;经常会遇到用字段计算器对要素的属性表进行计算。下面以一个例子演示如何在ArcGIS Pro SDK二次开发中实现。 一、要实现的功能 如上图所示的要素图层&#xff0c;要实现如下功能&#xff1a; 当字段【市级行政区】的值为【泉州市】时&#xff0c;将…...

数据结构与算法—散列表

目录 散列表 散列函数 散列冲突解决 1、开放寻址法 1.1 线性探测 1.2 二次探测 1.3 双重散列 2、链表法 使用场景 单词查找 散列表与链表的结合使用LRU 散列表总结 散列表实例 散列表 Word 单词拼写功能&#xff0c;如何实现的&#xff1f;散列表&#xff08;Has…...

计算机网络笔记、面试八股(一)—— TCP/IP网络模型

本章目录1. TCP/IP网络模型1.1 应用层1.1.1 应用层作用1.1.2 应用层有哪些常用协议1.2 运输层1.2.1 TCP与UDP的区别1.2.2 分块传输1.2.3 端口1.3 网络层1.3.1 IP报文1.3.2 IP地址1.3.3 网络号和主机号的获得1.3.4 子网掩码的获得1.3.5 路由1.3.6 IP地址与MAC地址的区别1.3.7 AR…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...