当前位置: 首页 > news >正文

混沌系统在图像加密中的应用(小波混沌神经网络)

混沌系统在图像加密中的应用(小波混沌神经网络)

  • 前言
  • 一、小波混沌神经网络模型
  • 二、拓展
  • 三、python代码

前言

小波混沌神经网络是一种神经网络模型,结合了小波变换和混沌理论,用于信号处理、分类和预测。该模型基于多层前向神经网络,其中每一层由小波基函数和一个非线性混沌函数构成。

一、小波混沌神经网络模型

选用由小波函数组成的小波暂态混沌神经网络作为研究对象。在连续Hopfield网络中引入小波理论和暂态混沌构造的小波混沌神经网络定义如下

对于Hopfield网络可以看我之前的文章
混沌系统在图像加密中的应用(Hopfield混沌神经网络)

在这里插入图片描述
与 Hopfield 神经网络相 比,此小波混沌神经网络的激励函数由小波函数和 Sigmoid 函数组成,且具有暂态的混沌动力学行为。其激励函数是非单调递增但总体上是递增的函数,是由 Sigmoid 函数和 Wavelet 函数组合而成的。

Wavelet 函数的意义是既能使激励函数非单调,又能使激励函数有小波函数的优点。其混沌产生机制是通过自反馈连接项按指数方式递减引入的。且此网络多增加了一项非线性时变衰减项

在这里插入图片描述
当自反馈连接权 z(t) 以指数方式趋于零时,此混沌神经网络退化为一个 Hopfield 神经网络

为了更好地分析上述模型的运行机理,以单个神经元为例(令α=0),分析混沌 Hopfield 神经网络的动力学特性。我们选取的激活函数为sigmoid + Wavelet 函数,设置网络参数分别为:
ε_1 = 0.035
ε_2 = 0.1
c = 1/7
k = 1.0
u_0 = 0.5
z_0 = 0.8
I_0 = 0.6
β = 0.001

则网络的输出 v(t)、退温函数z(t)的演化过程分别如下图所示。由图,该网络具有暂态混沌动力学行为,随 着z(t) 不断衰减,通过一个倍周期逆分岔的连续混沌分岔过程,网络将逐渐趋近于一个稳定的平衡点。

在这里插入图片描述
在这里插入图片描述

二、拓展

大家可以试试其他激活函数,比如softPlus、arcTan、softsign、bent_identity、symmetrical_sigmoid、log_log、gauss、Morlet、ReLU、P-ReLU、Leaky-ReLU、Maxout 等等

三、python代码

import numpy as np
import matplotlib.pyplot as plt
import pylab as mpl
mpl.rcParams['font.sans-serif'] = ['YouYuan']  # 指定默认字体def sigmoid(x):return 1. / (1 + np.exp(-x))
def Morlet(x):return np.exp(-((x)**2) / 2) * np.cos(5 * x)
def Wave(u_t0, z0):v_t = sigmoid((u_t0 / r1)) + c * Morlet((u_t0 / r2))u_t = k * u_t0 - z0 * (v_t - I0)z_t = (1 - b) * z0return v_t, u_t, z_tlist_vt = []
list_ut = []
list_I0 = []
list_zt = []
list_rt = []
list_time = []
# 系统初值
z0 = 0.8
u_t0 = 0.5
# 系统参数
r1 = 0.035
r2 = 0.1
c = 1 / 7  # 0<c<1
k = 1.0  # 0<=k<=1
b = 0.001  # 0<b<1
I0 = 0.60
for i in range(1500):v_t1, u_t1, z1 = Wave(u_t0, z0)u_t0 = u_t1z0 = z1r0 = r1list_vt.append(v_t1)list_I0.append(I0)list_ut.append(u_t0)list_zt.append(z0)list_rt.append(r0)list_time.append(i)plt.figure()
plt.title('Wave Chaos -- activation:sigmoid+Morlet')
plt.tick_params(labelsize=15)
plt.xlabel('迭代次数', fontsize=15)
plt.ylabel('v(t)', fontsize=15)
plt.grid(True, color='c', linestyle='--', linewidth='1')
plt.scatter(list_time, list_vt, c='r', marker='.', s=1)plt.figure()
plt.tick_params(labelsize=15)
plt.xlabel('迭代次数', fontsize=15)
plt.ylabel('z(t)', fontsize=15)
plt.grid(True, color='c',linestyle='--',linewidth='1')
plt.scatter(list_time, list_zt, c='r',marker='.', s=1)plt.show()

相关文章:

混沌系统在图像加密中的应用(小波混沌神经网络)

混沌系统在图像加密中的应用&#xff08;小波混沌神经网络&#xff09; 前言一、小波混沌神经网络模型二、拓展三、python代码 前言 小波混沌神经网络是一种神经网络模型&#xff0c;结合了小波变换和混沌理论&#xff0c;用于信号处理、分类和预测。该模型基于多层前向神经网…...

Node.js中的文件系统(file system)模块

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

react组件间通信之context

一般用于【祖组件】与【后代组件】间通信 案例&#xff1a; A,B,C,D四个组件的关系分别为&#xff1a;爷爷&#xff0c;爸爸&#xff0c;儿子&#xff0c;孙子 从A向C传递参数&#xff1a;C组件为类式组件 从A向D传递参数&#xff1a;D组件为函数组件 import React, { Componen…...

京东数据分析:2023年10月京东洗衣机行业品牌销售排行榜

鲸参谋监测的京东平台10月份洗衣机市场销售数据已出炉&#xff01; 10月份&#xff0c;洗衣机市场整体销售呈上升走势。鲸参谋数据显示&#xff0c;今年10月&#xff0c;京东平台洗衣机市场的销量为143万&#xff0c;环比增长约23%&#xff0c;同比增长约1%&#xff1b;销售额约…...

QQ恢复聊天记录,就用这3个方法!

无论是因为误操作、手机丢失、系统崩溃&#xff0c;还是因为更换了新手机&#xff0c;恢复重要的QQ聊天记录都是一件必做的事情。通过聊天记录&#xff0c;用户可以随时查看之前的信息&#xff0c;以便了解事情的经过。 那么&#xff0c;如何恢复丢失的QQ聊天记录呢&#xff1…...

高能数造电池3D打印智能制造小试线,开启全固态电池数字化新时代

在科技创新的浪潮中&#xff0c;电池制造领域又迎来了一次突破性的进展。近日&#xff0c;高能数造(西安)技术有限公司重磅推出了其最新电池数字制造装备——全固态电池3D打印智能制造小试线 &#xff0c;这一创新性的技术开启了全固态电池的数字化智造新时代&#xff0c;为全固…...

stable diffusion为什么能用于文本到图像的生成

推荐基于稳定扩散(stable diffusion) AI 模型开发的自动纹理工具&#xff1a; DreamTexture.js自动纹理化开发包 - NSDT 稳定扩散获得如此多关注的原因 如果你还没有看过它&#xff1a;稳定扩散是一个文本到图像的生成模型&#xff0c;你可以输入一个文本提示&#xff0c;比如…...

c语言刷题第10周(16~20)

规律&#xff1a; 若多个次数最多按ASCII码顺序输出。 用for循环i取&#xff08;0~26&#xff09; 则输出满足条件的字符串中位置最靠前的那个。 用while循环遍历&#xff08;while&#xff08;a[i]!\0&#xff09;&#xff09; 从键盘输入任意只含有大小写字母的串s&…...

Vue.js 响应式系统深度剖析

Vue.js 是当前最流行的 JavaScript 前端框架之一&#xff0c;其核心特性之一就是响应式系统。Vue.js 响应式系统的设计允许开发者以声明式的方式更新 DOM&#xff0c;随着数据变化自动更新相关组件。本文将详细介绍 Vue.js 响应式系统的工作原理&#xff0c;并通过示例来展示其…...

LabVIEW如何才能得到共享变量的引用

LabVIEW如何才能得到共享变量的引用 有一个LabVIEW 库文件 (.lvlib) &#xff0c;其中有一些定义好的共享变量。但需要得到每个共享变量的引用以便在程序运行时访问其属性。 共享变量的属性定义在“变量”类属性节点中。为了访问变量类&#xff0c;共享变量的引用必须连接到变…...

界面控件DevExtreme图表和仪表(v23.1) - 新功能(Angular,React,Vue,jQuery)

本文将为大家总结下DevExtreme在v23.1版本中发布的一些与图表和仪表盘相关的功能。 DevExtreme拥有高性能的HTML5 / JavaScript小部件集合&#xff0c;使您可以利用现代Web开发堆栈&#xff08;包括React&#xff0c;Angular&#xff0c;ASP.NET Core&#xff0c;jQuery&#…...

Rust和isahc库编写代码示例

Rust和isahc库编写的图像爬虫程序的代码&#xff1a; rust use isahc::{Client, Response}; fn main() { let client Client::new() .with_proxy("") .finish(); let url ""; let response client.get(url) .send() …...

Win10笔记本开热点后电脑断网的解决方法

在Win10笔记本电脑中用户可以随时打开热点&#xff0c;但是发现热点开启后电脑就会断网&#xff0c;网络不稳定就会影响到用户的正常使用。下面小编给大家介绍两种简单的解决方法&#xff0c;解决后用户在Win10笔记本电脑开热点就不会有断网的问题出现了。 具体解决方法如下&am…...

跨链知识指南

跨链知识指南 什么是跨链 跨链就是能够让两个不同的链产生某种关联的技术&#xff0c;或者说能把链A的东西搬到链B&#xff0c;跨链是一个复杂的过程&#xff0c;需要链对链外的信息的获取与验证&#xff0c;需要节点有单独的验证能力等等 什么是跨链桥&#xff1f; 跨链桥…...

字符编码转换时发生内存越界引发的摄像头切换失败问题的排查

目录 1、问题说明 2、初步分析 3、字符串字符编码说明 4、进一步分析 5、为啥在日常测试时没有遇到切换摄像头失败的问题呢&#xff1f; 6、华为MateBook笔记本使用高通的CPU 7、最后 VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更…...

git修改之前的commit提交的作者信息和邮箱信息

更改之前提交的作者信息和邮箱信息需要进行两步操作。首先&#xff0c;使用 git filter-branch 命令进行历史重写&#xff0c;然后使用 git push --force 将更改推送到远程仓库。 步骤 1: 使用 git filter-branch 进行历史重写 在终端或命令行中执行以下命令&#xff1a; gi…...

《视觉SLAM十四讲》-- 相机与图像

04 相机与图像 4.1 相机模型 4.1.1 针孔相机模型 针孔模型描述了一束光线通过针孔后&#xff0c;在针孔背面投影成像的关系&#xff08;类似小孔成像原理&#xff09;。 根据相似三角关系 Z f − X X ′ − Y Y ′ (3-1) \frac{Z}{f}-\frac{X}{X^{\prime}}-\frac{Y}{Y^{\p…...

欧科云链:成本与规模之辨——合规科技如何赋能香港Web3生态?

作为国际金融中心&#xff0c;香港近两年来在虚拟资产及Web3领域频频发力。秉持着“稳步创新”的基本逻辑&#xff0c;香港在虚拟资产与Web3领域已建立一定优势&#xff0c;但近期各类风险事件的发生则让业界的关注焦点再次转向“安全”与“合规”。 在香港FinTech Week前夕&a…...

【文献分享】NASA JPL团队CoSTAR一大力作:直接激光雷达里程计:利用密集点云快速定位

论文题目&#xff1a;Direct LiDAR Odometry: Fast Localization With Dense Point Clouds 中文题目&#xff1a;直接激光雷达里程计:利用密集点云快速定位 作者&#xff1a;Kenny Chen, Brett T.Lopez, Ali-akbar Agha-mohammadi 论文链接&#xff1a;https://arxiv.org/pd…...

SPASS-探索性分析

探索性分析的意义 探索性分析更加强大,它是一种在对资料的性质、分布特点等完全不清楚的情况下,对变量进行更深入研究的描述性统计方法。在进行统计分析前,通常需要寻求和确定适合所研究的问题的统计方法, SPSS提供的探索性分析是解决此类问题的有效办法 探索性分析提供了很…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...