Pytorch实战教程(一)-神经网络与模型训练
0. 前言
人工神经网络 (Artificial Neural Network, ANN) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟合能力就越大,因此预测的准确性就越高。
有多种不同的 ANN 架构,根据通用逼近定理,我们总能找到一个足够大的包含正确权重集的神经网络架构,可以准确地预测任何给定输入的输出结果。这意味着,对于给定的数据集/任务,我们可以创建一个架构并不断调整其权重,直到 ANN 预测出正确结果,调整网络权重的过程称为训练神经网络。
计算机视觉中的一项重要任务是识别图像中的对象类别,即图像分类,ImageNet 是图像分类领域的一项权威竞赛,历年分类准确率情况如下:

从上图可以看出,通过利用神经网络,模型错误率显着减少,随着时间的推移,神经网络逐渐变得更深、更复杂,分类错误率不断减少,并表现出超越人类的水平。
在本节中,我们将使用一个简单的数据集创建一个简单的神经网络架构,以了解 ANN 的各个组成部分(前向传播、反向传播、学习率等)对于模型权重调整的作用,以掌握神经网络如何根据给定
相关文章:
Pytorch实战教程(一)-神经网络与模型训练
0. 前言 人工神经网络 (Artificial Neural Network, ANN) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数…...
【MySQL】手把手教你centos7下载MySQL
centos7下载MySQL 前言正式开始卸载不需要的环境(如果你之前没有安装过数据库相关的东西可以跳过)下载mysql登录mysql登陆⽅法⼀【不⾏就下⼀个】登陆⽅法⼆【不⾏就下⼀个】登录方式三 前言 安装和卸载MySQL都用系统的root权限,更方便一点&…...
openlayers
OpenLayers使用_openlayers中文官网-CSDN博客...
力扣每日一道系列 --- LeetCode 88. 合并两个有序数组
📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构探索 ✅LeetCode每日一道 🌅 有航道的人,再渺小也不会迷途。 文章目录 思路1:暴力求解思路2:原地合并 LeetCode 88. 合并两个有序数组…...
Android Studio(项目收获)
取消按钮默认背景色 像按钮默认背景色为深蓝色,即使使用了background属性指定颜色也不能生效。 参考如下的解决方法: 修改/res/values/themes.xml中的指定内容如下: <style name"Theme.TianziBarbecue" parent"Theme.Mater…...
MQ写满的情况如何处理?
**MQ(Message Queue)**写满的情况通常指消息队列中的存储空间已经被用尽,无法再接收新的消息。处理MQ写满的情况涉及到多个方面,包括监控、调整配置、增加资源、以及处理积压消息等。下面是一些处理MQ写满的 常见方法:…...
点名(缺失的数字),剑指offer,力扣
目录 我们直接看题解吧: 审题目事例提示: 方法: 解题思路(二分法): 代码: 方法二:直接遍历 题目地址 LCR 173. 点名 - 力扣(LeetCode) 今天刷点名(…...
云安全—Dashboard 攻击面
0x00 前言 众所周知,如果只是一味的REST接口或者命令行话的操作方式,就会变相的提高操作门款,并且不会有很好的呈现方式,所以就有了web ui的方式,也就是Dashboar面板,本篇主要讨论一下关于Dashboar面板的概…...
FCOS难点记录
FCOS 中有计算 特征图(Feature map中的每个特征点到gt_box的左、上、右、下的距离) 1、特征点到gt_box框的 左、上、右、下距离计算 x coords[:, 0] # h*w,2 即 第一列y coords[:, 1] l_off x[None, :, None] - gt_boxes[..., 0][:, No…...
java通过FTP跨服务器动态监听读取指定目录下文件数据
背景: 1、文件数据在A服务器(windows)(不定期在指定目录下生成),项目应用部署在B服务器(Linux); 2、项目应用在B服务器,监听A服务器指定目录,有新…...
5G边缘计算网关的功能及作用
5G边缘计算网关具有多种功能。 首先,它支持智能云端控制,可以通过5G/4G/WIFI等无线网络将采集的数据直接上云,实现异地远程监测控制、预警通知、报告推送和设备连接等工作。 其次,5G边缘计算网关可以采集各种数据,包…...
阿里云AIGC小说生成【必得京东卡】
任务步骤 此文真实可靠不做虚假宣传,绝对真实,可截图为证。 领取任务 链接(复制到wx打开):#小程序://ITKOL/1jw4TX4ZEhykWJd 教程实践 打开函数计算控制台 应用->创建应用->人工智能->通义千问 AI 助手-…...
数据结构之AVL树
map/multimap/set/multiset这几个容器有个共同点是: 其底层都是按照二叉搜索树来实现的,但是普通的二叉搜索树有其自身的缺陷, 假如往树中插入的元素有序或者接近有序, 二叉搜索树就会退化成单支树, 时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了…...
如何用Java实现一个基于机器学习的情感分析系统,用于分析文本中的情感倾向
背景:练习两年半(其实是两周半),利用工作闲余时间入门一下机器学习,本文没有完整的可实施的案例,由于知识体系不全面,目前代码只能运行,不能准确的预测 卡点: 1 由于过…...
开发聚合支付的的意义
开发聚合支付的意义在于整合各种支付方式,为消费者和商家提供便捷高效的支付体验,同时满足商家的多元化支付需求,提高支付效率和用户体验。 具体来说,聚合支付具有以下意义: 方便快捷:聚合支付整合了多种…...
ChatGPT生产力|中科院学术ChatGPT优化配置
资源链接:GitHub - binary-husky/gpt_academic b站配置讲解链接:chatgpt-academic 新手运行官方精简指南(科研chatgpt拓展) 某知配置图文讲解:图文详解:在windows中部署ChatGPT学术版 - 知乎 (zhihu.com) 一…...
语音播报speechSynthesis最简单的例子(亲测有用)
最简单的例子,在chrome上亲测有效: const utterThis new SpeechSynthesisUtterance(我来试试呀); const synth window.speechSynthesis; synth.speak(utterThis);加入配置,可以配置语言、音量、语速、音高,继续玩: …...
呆头鹅-全自动视频混剪,批量剪辑批量剪视频,探店带货系统,精细化顺序混剪,故事影视解说,视频处理大全,精细化顺序混剪,多场景裂变,多视频混剪
视频闪闪-全自动视频混剪,探店带货系统,多视频混剪,让你成为视频处理大师! 一、全自动视频混剪 www.shipinshanshan.com 你是否曾经厌烦于冗长的视频剪辑过程?是否曾经为了一个短短的混剪视频而熬夜加班?现…...
牛客竞赛网(爱吃素)
题目描述 牛妹是一个爱吃素的小女孩,所以很多素数都害怕被她吃掉。 一天,两个数字aaa和bbb为了防止被吃掉,决定和彼此相乘在一起,这样被吃掉的风险就会大大降低,但仍有一定的可能被吃掉,请你判断他们相乘后…...
基于高效多分支卷积神经网络的生长点精确检测与生态友好型除草
Eco-friendly weeding through precise detection ofgrowing points via efficient multi-branch convolutional neural networks 摘要1、介绍2、相关工作2.1 杂草检测,高效除草2.2 用于密集预测任务的编解码网络2.3 语义图形是一种有效的标签方法3、总结摘要 在本研究中,我…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
