时序预测 | MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制)
时序预测 | MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制)
目录
- 时序预测 | MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制)
- 预测效果
- 基本描述
- 模型描述
- 程序设计
- 参考资料
预测效果











基本描述
1.MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制),鲸鱼优化卷积门控循环单元注意力时间序列预测;
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
5.鲸鱼算法优化学习率,隐藏层节点,正则化系数;
模型描述
注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。


程序设计
- 完整程序和数据获取方式:私信博主回复MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制)。
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数
dim = 3; % 优化参数个数
lb = [1e-3,10 1e-4]; % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1]; % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=WOA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));
best_hd = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1") % Relu 激活层lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层flattenLayer("Name", "flatten") % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc") % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
时序预测 | MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制)
时序预测 | MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制) 目录 时序预测 | MATLAB实现WOA-CNN-GRU-Attention时间序列预测(SE注意力机制)预测效果基本描述模型描述程序设计参考资料 预测效果 基本描述 1.MATLAB实现…...
华为防火墙二层透明模式下双机热备负载分担配置(两端为路由器)
这种模式只做负载分担,不能是主备备份,因为主备备份模式下,备设备会把vlan down掉,如果是主备备份模式,那在主挂后,备的状态在切换过程中先起vlan,再建立ospf邻接,那业务会断线较久&…...
“基于RflySim平台飞控底层算法开发”系列专题培训 (第三期)
>> RflySim平台系列专题培训 RflySim平台是一个生态系统或工具链(官网:https://doc.rflysim.com),发起于北航可靠飞行控制研究组,主要用于遵循基于模型设计的思想进行无人系统的控制和安全测试。本平台选择MATL…...
Leetcode刷题详解——全排列 II
1. 题目链接:47. 全排列 II 2. 题目描述: 给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。 示例 1: 输入:nums [1,1,2] 输出: [[1,1,2],[1,2,1],[2,1,1]]示例 2: 输…...
音频——解析 PCM 数据
文章目录 生成 PCM 数据16bit16bit mono16bit stereo16bit 4 channel16bit 8 channel24bit解析 PCM 数据解析 24bit 数据程序源码生成 PCM 源码解析 PCM 源码生成 PCM 数据 16bit 16bit mono int 48k_16bit_modo[] = {0, 4276, 8480, 12539, 16383, 19947, 23169, 25995, 28…...
win10 下 ros + Qt 工程CMakeLists.txt
win10 下 ros Qt 工程CMakeLists.txt 系统:win10 ros: melodic Qt: 5.12.12 源码目录: D:\workspace\catkin_qt 示例代码 https://github.com/ncnynl/ros-qt.git 由于示例代码是Qt4 ,目前我是用QT5,所以CMakeLists.txt 修改如下 CMakeLists.txt #####…...
Scala中编写多线程爬虫程序并做可视化处理
目录 一、引言 二、Scala爬虫程序的实现 1、引入必要的库 2、定义爬虫类 3、可视化处理 三、案例分析:使用Scala爬取并可视化处理电影数据 1、定义爬虫类 2、实现爬虫程序的控制逻辑 3、可视化处理电影数据 四、总结 一、引言 随着互联网的快速发展&#…...
使用 huggingface_hub 镜像下载 大模型
download.py 👇 import os # 配置 hf镜像 os.environ[HF_ENDPOINT] https://hf-mirror.com# 设置保存的路径 local_dir "XXXXXX"# 设置仓库id model_id "sensenova/piccolo-large-zh"cmd f"huggingface-cli download --resume-downlo…...
路径加密(替换空格),剑指offer,力扣
目录 我们直接看题解吧: 方法: 审题目事例提示: 解题思路: 法1: 代码(法1): 法2: 代码(法2): 原题解: 【剑指Offer】2、替…...
HarmonyOS开发:UI开展前的阶段总结
前言 关于HarmonyOS,陆陆续续总结了有14篇的文章,大家可以发现,没有一篇是关于UI相关的,不是自己没有分享的打算,而是对于这些UI而言,官方都有着一系列的文档输出,如果我再一一的分享࿰…...
Linux安装Libreoffice
windos安装Libreoffice https://zh-cn.libreoffice.org/ C:\路径\LibreOffice\program\soffice.bin --help 看是否输出帮助命令 Linux安装Libreoffice 1、下载rpm包并解压https://mirrors.cloud.tencent.com/libreoffice/libreoffice/stable/ 2、安装: yum install…...
如何将系统盘MBR转GPT?无损教程分享!
什么是MBR和GPT? MBR和GPT是磁盘的两种分区形式:MBR(主引导记录)和GPT(GUID分区表)。 新硬盘不能直接用来保存数据。使用前应将其初始化为MBR或GPT分区形式。但是,如果您在MBR时需…...
基于element-plus定义表单配置化
文章目录 前言一、配置化的前提二、配置的相关组件1、新建form.vue组件2、新建input.vue组件3、新建select.vue组件4、新建v-html.vue组件5、新建upload.vue组件6、新建switch.vue组件7、新建radio.vue组件8、新建checkbox.vue组件9、新建date.vue组件10、新建time-picker.vue组…...
LeetCode算法题解(贪心)|LeetCode122. 买卖股票的最佳时机 II、LeetCoed55. 跳跃游戏、LeetCode45. 跳跃游戏 II
一、LeetCode122. 买卖股票的最佳时机 II 题目链接:122. 买卖股票的最佳时机 II 题目描述: 给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。 在每一天,你可以决定是否购买和/或出售股票。你在任何时候 …...
计蒜客详解合集(2)期
目录 T1126——单词倒排 T1617——地瓜烧 T1612——蒜头君的数字游戏 T1488——旋转单词 T1461——校验信用卡号码 T1437——最大值和次大值 T1126——单词倒排 超级水的一道题,和T1122类似但更简单,分割后逆序输出即可~ 编写程序,读入…...
华为防火墙vrrp+hrp双机热备主备备份(两端为交换机)
默认上下来全两个vrrp主都是左边 工作原理: vrrp刚开机都是先initialize状态,然后切成active或standb状态。 hrp使用18514端口,且用的单播,要策略放行,由主设备发hrp心跳报文 如果设备为acitve状态时自动优先级为65…...
Angular 由一个bug说起之一:List / Grid的性能问题
在angular中,MatTable构建简单,使用范围广。但某些时候会出现卡顿 卡顿情景: 1:一次性请求太多的数据 2:一次性渲染太多数据,这会花费CPU很多时间 3:行内嵌套复杂的元素 4:使用过多的…...
第12章 PyTorch图像分割代码框架-3:推理与部署
推理模块 模型训练完成后,需要单独再写一个推理模块来供用户测试或者使用,该模块可以命名为test.py或者inference.py,导入训练好的模型文件和待测试的图像,输出该图像的分割结果。inference.py主体部分如代码11-7所示。 代码11-7 …...
MYSQL---基础篇
一、数据库操作 1.创建数据库:CREATE DATABASE db_test1; 2.使用数据库:use 数据库名; 3.删除数据库:DROP DATABASE [IF EXISTS] db_name; 4.创建表:CREATE TABLE table_name ( field1 datatype, field2…...
【启扬方案】启扬安卓屏一体机在医疗自助服务终端上的应用解决方案
为了解决传统医疗模式下的“看病难、看病慢”等问题,提高医疗品质、效率与效益,自助服务业务的推广成为智慧医疗领域实现信息化建设、高效运作的重要环节。 医疗自助服务终端是智慧医疗应用场景中最常见的智能设备之一,它通过与医院信息化系统…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
