ARC142D Deterministic Placing
ARC142D Deterministic Placing
题目大意
有一棵nnn个顶点的树,每个点上最多放一张卡片,你可以做如下操作:
- 同时将所有的卡片移到它所在顶点的相邻的一个顶点上
一个操作我们说它是好的,当下列条件满足:
- 每条边最多被某张卡片经过
- 每个顶点最多被一张卡片占据
小TTT可以选择一个或多个顶点来放置卡片,一个顶点放置一张卡片。他有2n−12^n-12n−1种方式,求满足以下条件的方案数:
对于每个非负整数kkk
- 它能连续进行kkk次好的操作
- 令SkS_kSk表示经过刚好kkk次操作后被卡片占据的点的集合,则SkS_kSk是唯一的
题解
第一步:分树为链
我们可以发现,每一张卡片都是在两个点上反复横跳的。我们把每个反复横跳的边拿出来,那一定是若干条不相交的链。且这些链一定是以空点为顶部,有卡片的点为中部和尾部(一条链不能只有一个空点)。这些链一定能填满整棵树。
假设x,yx,yx,y为相邻的两个点且在不同的链上,为了避免重复和不合法的情况,我们做一些规定。
- 如果xxx链的端点且yyy为链的中间点,则在第二次操作时,在yyy上的卡片可以向xxx移动,则SkS_kSk不唯一
- 如果x,yx,yx,y都是链的顶部,则第一次操作后两条链合并成一条链,可以往两个方向移动,SkS_kSk不唯一
- 如果x,yx,yx,y都是链的尾部,则第一次操作时xxx的位置空出了,yyy所在可以往链头或xxx移动,SkS_kSk不唯一
其余情况都是合法的。
第二步:树形DP
定义fu,if_{u,i}fu,i表示点uuu第iii种状态下的方案数。各种状态如下:
- fu,0f_{u,0}fu,0表示uuu为链身,且uuu在链上无前无后
- fu,1f_{u,1}fu,1表示uuu为链身,且uuu在链上有前无后
- fu,2f_{u,2}fu,2表示uuu为链身,且uuu在链上无前有后
- fu,3f_{u,3}fu,3表示uuu为链身,且uuu在链上有前有后
- fu,4f_{u,4}fu,4表示uuu为链头,且uuu在链上无后面的点
- fu,5f_{u,5}fu,5表示uuu为链头,且uuu在链上有后面的点
- fu,6f_{u,6}fu,6表示uuu为链尾,且uuu在链上无后面的点
- fu,7f_{u,7}fu,7表示uuu为链尾,且uuu在链上有后面的点
有前或有前面的点即存在链头,有后或有后面的点即存在链尾。
为了防止在转移的时候计算重复,我们还需要定义gu,ig_{u,i}gu,i。假设当前枚举的是uuu的各个儿子,且枚举到的儿子为vvv,则fu,if_{u,i}fu,i表示点uuu在统计vvv之前的各种状态的方案数,ggg表示统计vvv之后的方案数,则可以用fu,if_{u,i}fu,i和fv,if_{v,i}fv,i来更新ggg,在vvv的贡献计算完之后再将ggg的值赋值给fff,然后计算uuu的下一个儿子。
因为状态比较多,所以转移式也比较多。除去不合法的情况,有202020种转移方法,具体见代码。
对于每个点,状态0,4,60,4,60,4,6的fff的初值为111。最后的答案为f1,3+f1,5+f1,7f_{1,3}+f_{1,5}+f_{1,7}f1,3+f1,5+f1,7。
总结
这道题主要是用树形DP,考虑各种状态来进行状态转移。时间复杂度为O(n)O(n)O(n)。
注:代码中gt(v1,v2,v3)gt(v1,v2,v3)gt(v1,v2,v3)表示gu,v1=fu,v2×fv,v3g_{u,v1}=f_{u,v2}\times f_{v,v3}gu,v1=fu,v2×fv,v3,vvv为uuu的儿子。这一步即用uuu点的状态v2v2v2的fff和vvv点的状态v2v2v2的fff值更新ggg的状态v1v1v1。
code
#include<bits/stdc++.h>
using namespace std;
int n,x,y,tot=0,d[500005],l[500005],r[500005];
long long v[10],f[200005][8];
long long mod=998244353;
void add(int xx,int yy){l[++tot]=r[xx];d[tot]=yy;r[xx]=tot;
}
void pt(int v1,int v2,int v3){v[v1]=(v[v1]+f[x][v2]*f[y][v3]%mod)%mod;
}
void dfs(int u,int fa){f[u][0]=f[u][4]=f[u][6]=1;for (int i=r[u];i;i=l[i]){if(d[i]==fa) continue;dfs(d[i],u);for (int j=0;j<8;j++) v[j]=0;x=u;y=d[i];pt(0,0,3);pt(1,0,4);pt(1,0,1);pt(1,1,3);pt(2,0,6);pt(2,0,2);pt(2,2,3);pt(3,2,4);pt(3,1,6);pt(3,1,2);pt(3,2,1);pt(3,3,3);pt(4,4,7);pt(5,5,7);pt(5,4,2);pt(5,4,6);pt(6,6,5);pt(7,7,5);pt(7,6,1);pt(7,6,4);for(int j=0;j<8;j++) f[u][j]=v[j];}
}
int main()
{scanf("%d",&n);for(int i=1;i<n;i++){scanf("%d%d",&x,&y);add(x,y);add(y,x);}dfs(1,0);printf("%lld",(f[1][3]+f[1][5]+f[1][7])%mod);return 0;
}
相关文章:
ARC142D Deterministic Placing
ARC142D Deterministic Placing 题目大意 有一棵nnn个顶点的树,每个点上最多放一张卡片,你可以做如下操作: 同时将所有的卡片移到它所在顶点的相邻的一个顶点上 一个操作我们说它是好的,当下列条件满足: 每条边最…...
阶段八:服务框架高级(第二章:分布式事务)
阶段八:服务框架高级(第二章:分布式事务)Day-分布式事务0.学习目标1.分布式事务问题1.1.本地事务1.2.分布式事务1.3.演示分布式事务问题2.理论基础2.1.CAP定理2.1.1.一致性2.1.2.可用性2.1.3.分区容错2.1.4.矛盾2.2.BASE理论2.3.解…...
RPC异步化原理
深入RPC,更好使用RPC,须从RPC框架整体性能考虑问题。得知道如何提升RPC框架的性能、稳定性、安全性、吞吐量及如何在分布式下快速定位问题。RPC框架如何压榨单机吞吐量? 1 前言 TPS一直上不去,压测时CPU压到40%~50%就…...
C# 多窗口切换的实现
1、目的在主窗口中根据不同的按钮选择不同的子窗口显示。2、实现(1)、创建Winform窗体程序,放入SplitContainer控件splitContainer1将窗体分成左右2部分;(2)、在左侧splitContainer1.panel1中放入3个Button…...
【深度学习】RNN
1. 什么是RNN 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递…...
招聘岗位,机会难得
岗位需求 费话不多说,直接上JD: 嵌入式开发工程师: 17:411.计算机、通信等相关专业。 2.熟悉网络基础知识,熟悉802.11a/b/g/n/ac协议,能通过抓包等分析手段排查定位各种wifi相关问题。 3.熟悉路由器主要功能及实现原…...
web打印的几种方法(2023)
在工作中出现web打印的情况是非常多的,其实这也是一个比较烦人的问题,这篇博客整理一下关于Web打印的一些方法或者方式。 1. window.print() 这个方法是用来打印网页的,页面上的其他的元素也会被打印处理,在打印的时候页眉页脚是…...
代码随想录算法训练营day44 | 动态规划之完全背包 518. 零钱兑换 II 377. 组合总和 Ⅳ
day44完全背包基础知识问题描述举个栗子518. 零钱兑换 II1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组377. 组合总和 Ⅳ1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例来推导dp数组完全背包基…...
IntelliJ IDEA 实用插件推荐(包含使用教程)
IntelliJ IDEA 实用插件推荐 背景:电脑重装了,重新下载了最新版的IntelliJ IDEA,感觉默认模式有点枯燥,于是决定从网上下载一些实用美观的插件优化自己以后吃饭的工具,现在推荐的都是目前还能用的(亲身实践…...
WideDeep模型
google提出的Wide&deep模型,将线性模型与DNN很好的结合起来,在提高模型泛化能力的同时,兼顾模型的记忆性。wide&deep这种将线性模型与DNN的并行连接模式,后来称为推荐领域的经典模式,奠定了后面深度学习模型的…...
nacos集群模式+keepalived搭建高可用服务
实际工作中如果nacos这样的核心服务停掉了或者整个服务器宕机了,那整个系统也就gg了,所以像这样的核心服务我们必须要搞个3个或者3个以上的nacos集群部署,实现高可用; 部署高可用版本之前,首先你要会部署单机版的naco…...
吉利「银河」负重突围
吉利控股集团最新公布的数据显示,2022年,吉利控股集团汽车总销量超230万辆,同比增长4.3%。其中,新能源汽车销量超64万辆,同比增长100.3%。 在中国本土市场,2022年吉利集团旗下品牌乘用车总交付量为135.84万…...
QT之图形视图框架概述——Graphics View Framework
QT之图形视图框架概述——Graphics View Framework1. 概述2. 核心类3. 事件传递4. Graphics View 坐标系统5. 参考1. 概述 Graphics View Framework是子Qt 4.2引入的,用来取代之前版本中的QCanvas。Graphics View Framework提拱了用于大量2D图形项的管理和交互的能…...
【SQL开发实战技巧】系列(二十二):数仓报表场景(上) 从分析函数效率一定快吗聊一聊结果集分页和隔行抽样实现方式
系列文章目录 【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事 【SQL开发实战技巧】系列(二):简单单表查询 【SQL开发实战技巧】系列(三):SQL排序的那些事 【SQL开发实战技巧…...
小米无线AR眼镜探索版细节汇总
在MWC 2023期间,小米正式发布了一款无线AR眼镜,虽然还没看过实机,但XDA提前上手体验,我们从中进行总结。首先我要说的是,小米这款眼镜和高通无线AR眼镜参考设计高度重叠,产品卖点几乎一致,只是增…...
Web3中文|Litra:简洁而优美的NFT流动性协议,能给NFT市场带来什么?
2021年,NFT元年2021年,无疑是 NFT 的“元年”。这一年推特创始人的首条推特被拍出250万美元,加密艺术家Beeple的数字作品“First 5000 Days”在佳士得以6900万美元价格成交,无聊猿最高上涨了1800倍。2021年11月,在Goog…...
SSL证书对虚拟主机的用处有哪些?
虚拟主机是指在同一台服务器上,通过不同的域名或IP地址为多个网站提供服务的一种网络主机。而SSL证书则是一种数字证书,它用于加密网站与用户之间的通信,确保数据传输的安全性和完整性。在虚拟主机上,SSL证书有以下几个用处&#…...
SpringCloud之MQ笔记分享
MQ异步通信 初始MQ 同步通信 优点:时效性较强,可以以及得到结果 Feign就属于同步方式–问题: 耦合问题性能下降(中间的等待时间)资源浪费级联失败 异步通信 优点 耦合度低性能提升,吞吐量高故障隔离…...
动态规划背包问题
背包问题的分类 拿到背包问题,最重要的是会归类到哪一种背包问题中,常见的考题里主要是01背包和完全背包,leetcode上连多重背包的题目都没有。实际完全背包问题就是01背包的一种。 对一和零这道题,很多人容易把m看成一个背包,n看成另一个背包,从而当做多重背包。然而这…...
OpenCV4.x图像处理实例-张嘴和闭嘴检测
张嘴和闭嘴检测 在活体验证中,张嘴和闭嘴检测也是一个重要的环节。本文将介绍如何通过检测人脸上唇和下唇的关键点,并计算上唇和下唇的关键点的距离来检测当前人脸状态是否处于张嘴或闭嘴。 张嘴和闭嘴检测主要步骤如下: 第一步,安装依赖库 示例中使用到OpenCV和MediaP…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
API网关Kong的鉴权与限流:高并发场景下的核心实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中,API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关,Kong凭借其插件化架构…...
云原生周刊:k0s 成为 CNCF 沙箱项目
开源项目推荐 HAMi HAMi(原名 k8s‑vGPU‑scheduler)是一款 CNCF Sandbox 级别的开源 K8s 中间件,通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度,为容器提供统一接口,实现细粒度资源配额…...
