当前位置: 首页 > news >正文

OpenCV-Python小应用(九):通过灰度直方图检测图像异常点

OpenCV-Python小应用(九):通过灰度直方图检测图像异常点

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 通过灰度直方图检测图像异常点
    • 代码实现
    • 输出结果
  • 参考

在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
  • OpenCV用C++语言编写,它具有C++、Python、Java和MATLAB接口,并支持Windows、Linux、Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令。
  • 图像的灰度值是指图像中每个像素的亮度值,通常用于黑白图像。灰度值的范围通常是0到255,其中0表示黑色,255表示白色。在计算机视觉中,灰度图像是由纯黑和纯白来过渡得到的,在黑色中加入白色就得到灰色,纯黑和纯白按不同的比例来混合就得到不同的灰度值。
  • 在灰度图像中,每个像素的颜色值都是灰度值,指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0。在灰度图像中,每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。
  • 灰度直方图是一种用来描述数字图像中灰度级分布的图形工具。它是一个灰度级的函数,表示图像中具有某种灰度级的像素的个数,反映了图像中每种灰度出现的频率。
  • 灰度直方图是图像处理中非常重要的一个概念,它是我们对图像本身灰度的一个分析以及之后我们需要做二值化的一个基础的概念
  • 灰度直方图可以用来分析图像的对比度、亮度等特征,也可以用于图像增强、图像分割、图像压缩等领域。
  • 图像灰度直方图相关知识点,可查阅OpenCV-Python快速入门(九):直方图

实验环境

  • Python 3.6.13 (面向对象的高级语言)
  • OpenCV 3.4.10(python第三方库)pip3 install opencv-python==3.4.10.37

通过灰度直方图检测图像异常点

  • 基本思路:通过计算图像灰度,得到灰度直方图,这里认为灰度直方图中灰度值像素个数较少的灰度值大概率为异常点。
    在这里插入图片描述
  • 目录结构
    在这里插入图片描述

在这里插入图片描述

代码实现

import os
import cv2
import copy
import numpy as np
import matplotlib.pyplot as pltdef cal_low_high_hist(img):hist = cv2.calcHist([img],[0],None,[256],[0,255])flattened_hist = hist.flatten()  # [[255],[125],...] -> [255,125,...]# print(sum(flattened_hist)*0.125) # 下分位# print(sum(flattened_hist)*(1-0.125)) # 上分位# plt.plot(hist,color='b')# plt.show()# 下分位nums = 0for i in range(len(flattened_hist)):low_sum = sum(flattened_hist)*0.125nums += flattened_hist[i]if nums > low_sum:# print(i)break# 上分位nums = 0for j in range(len(flattened_hist)):low_sum = sum(flattened_hist)*(1-0.125)nums += flattened_hist[j]if nums > low_sum:# print(j)breakreturn i,jif __name__=="__main__":# 上分位计算值up_cal_val = [15,255]# 下分位计算值low_cal_val = [-255,-15]img_dir = 'imgs'img_name_list = os.listdir(img_dir)output_folder = 'out_imgs'if not os.path.exists(output_folder):os.mkdir(output_folder)for img_name in  img_name_list:img_path = os.path.join(img_dir,img_name)img = cv2.imread(img_path,0)i,j = cal_low_high_hist(img) # 下,上# print(i,j)up_cal_res = list(map(lambda x: x + j, up_cal_val))low_cal_res = list(map(lambda x: x + i, low_cal_val))# print(up_cal_res,low_cal_res) up_cal_res = [x if x <= 255 else 255 for x in up_cal_res] # 亮点(异常点)low_cal_res = [x if x >= 0 else 0 for x in low_cal_res] # 暗点(异常点)# print(up_cal_res,low_cal_res) #找到满足条件的像素点condition = np.logical_or(img>min(up_cal_res),img<max(low_cal_res))out_of_range_pixels = np.count_nonzero(condition)# print(out_of_range_pixels)# total_out_of_range_pixels += out_of_range_pixelssmall_image = copy.deepcopy(img)if out_of_range_pixels>4:contours,_ = cv2.findContours(condition.astype(np.uint8),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)valid_rectangles=[]for i,c in enumerate(contours):box=cv2.boundingRect(c)x,y,w,h, =boxcenter_x=x+w//2center_y=y+h//2# valid_rectangles.append((x,y,w,h,center_x,center_y))valid_rectangles.append([x,y,w,h,center_x,center_y])# cv2.drawContours(small_image,contours,i,(0,255.0),2)# cv2.rectangle(small_image,(x,y),(x+w,y+h),(0,0,255),2)pad = 5for i,(x,y,w,h,_,_) in enumerate(valid_rectangles):cv2.rectangle(small_image,(x-pad,y-pad),(x+w+pad,y+h+pad),(0,0,255),1)# 保存图片output_filename = f"{os.path.splitext(img_name)[0]}_res.jpg"output_path = os.path.join(output_folder,output_filename)cv2.imwrite(output_path,small_image)# 显示图片show_img = cv2.resize(small_image,(small_image.shape[1],small_image.shape[0]))cv2.imshow('{}'.format(output_filename),show_img)cv2.waitKey()cv2.destroyAllWindows()    

输出结果

在这里插入图片描述
在这里插入图片描述

参考

[1] https://opencv.org/
[2] 李立宗. OpenCV轻松入门:面向Python. 北京: 电子工业出版社,2019

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关文章:

OpenCV-Python小应用(九):通过灰度直方图检测图像异常点

OpenCV-Python小应用&#xff08;九&#xff09;&#xff1a;通过灰度直方图检测图像异常点 前言前提条件相关介绍实验环境通过灰度直方图检测图像异常点代码实现输出结果 参考 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容&#xff…...

关于el-table+el-input+el-propover的封装

一、先放图片便于理解 需求&#xff1a; 1、el-input触发focus事件&#xff0c;弹出el-table(当然也可以为其添加搜索功能、分页) 2、el-table中的复选共能转化成单选共能 3、选择或取消的数据在el-input中动态显示 4、勾选数据后&#xff0c;因为分页过多&#xff0c;原先选好…...

基于Python+OpenCV+SVM车牌识别系统-车牌预处理系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介简介系统流程系统优势 二、功能三、系统四. 总结 一项目简介 ## PythonOpenCVSVM车牌识别系统介绍 简介 PythonOpenCVSVM车牌识别系统是一种基于计算机视…...

力扣第72题 编辑距离 (增 删 改) C++ 动态规划 附Java代码

题目 72. 编辑距离 中等 相关标签 字符串 动态规划 给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1&#xff1a; 输入&a…...

工业相机基本知识理解:工业相机IO接口,功耗和供电方式

I-input 相机接收外部信号&#xff0c;可用于触发相机&#xff08;硬触发&#xff09;&#xff0c;也可用于定制不同的 功能&#xff0c;例如使用不同信号宽度来改变相机的曝光时间。主要用于现场设 备控制相机使用&#xff0c;常常配合各种传感器使用 O-output 相机输出信号&a…...

数据库设计

数据库设计特点 数据库建设的基本规律&#xff1a;三分技术&#xff0c;七分管理&#xff0c;十二分基础数据结构&#xff08;数据&#xff09;设计和行为&#xff08;处理&#xff09;设计相结合&#xff1a;数据库设计应该和应用系统设计相结合 数据库设计方法 新奥尔良方…...

【react.js + hooks】使用 useLoading 控制加载

在页面上 loading&#xff08;加载&#xff09;的效果十分常见&#xff0c;在某些场景下&#xff0c;一个页面上甚至可能有特别多的 loading 存在&#xff0c;此时为每一个 loading 专门创建一个 state 显然太过繁琐&#xff0c;不如试试写一个 useLoading 来集中管理&#xff…...

Cordova系列之化繁为简:打造全场景适用的Cordova组件

前言 在我之前的文章 Cordova初探 的开篇中说到了Cordova在Android应用开发中的一个显著的局限性就是我们的Activity必须继承其提供的CordovaActivity。这种设计对于那些追求个性化UI设计的项目而言&#xff0c;显得尤为受限。 其实也可以理解&#xff0c;Cordova主要旨在为前…...

Flink之Catalog

Catalog Catalog概述Catalog分类 GenericInMemoryCatalogJdbcCatalog下载JAR包及使用重启操作创建Catalog查看与使用Catalog自动初始化catalog HiveCatalog下载JAR包及使用重启操作hive metastore服务创建Catalog查看与使用CatalogFlink与Hive中操作自动初始化catalog 用户自定…...

计算机网络——物理层-传输方式(串行传输、并行传输,同步传输、异步传输,单工、半双工和全双工通信)

目录 串行传输和并行传输 同步传输和异步传输 单工、半双工和全双工通信 串行传输和并行传输 串行传输是指数据是一个比特一个比特依次发送的。因此在发送端和接收端之间&#xff0c;只需要一条数据传输线路即可。 并行传输是指一次发送n个比特&#xff0c;而不是一个比特&…...

男科医院服务预约小程序的作用是什么

医院的需求度从来都很高&#xff0c;随着技术发展&#xff0c;不少科目随之衍生出新的医院的&#xff0c;比如男科医院、妇科医院等&#xff0c;这使得目标群体更加精准&#xff0c;同时也赋能用户可以快速享受到服务。 当然相应的男科医院在实际经营中也面临痛点&#xff1a;…...

有没有实时检测微信聊天图片的软件,只要微信收到了有二维码的图片就把它提取出来?

10-2 如果你有需要自动并且快速地把微信收到的二维码图片保存到指定文件夹的需求&#xff0c;那本文章非常适合你&#xff0c;本文章教你如何实现自动保存微信收到的二维码图片到你指定的文件夹中&#xff0c;助你快速扫码&#xff0c;比别人领先一步。 首先需要准备好的材料…...

core-site.xml,yarn-site.xml,hdfs-site.xml,mapred-site.xml配置

core-site.xml <?xml version"1.0" encoding"UTF-8"?> <?xml-stylesheet type"text/xsl" href"configuration.xsl"?> <!--Licensed under the Apache License, Version 2.0 (the "License");you may no…...

数据分析实战 | KNN算法——病例自动诊断分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 九、模型调参 十、模型改进 十一、模型预测 一、数据及分析对象 CSV文件——“bc_data.csv” 数据集链接&#xff1a;https://dow…...

JS实现数据结构与算法

队列 1、普通队列 利用数组push和shif 就可以简单实现 2、利用链表的方式实现队列 class MyQueue {constructor(){this.head nullthis.tail nullthis.length 0}add(value){let node {value}if(this.length 0){this.head nodethis.tail node}else{this.tail.next no…...

计算机毕业设计 基于SpringBoot的驾校管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…...

S7-1200PLC和SMART PLC开放式以太网通信(UDP双向通信)

S7-1200PLC的以太网通信UDP通信相关介绍还可以参考下面文章链接: 博途PLC开放式以太网通信TRCV_C指令应用编程(运动传感器UDP通信)-CSDN博客文章浏览阅读2.8k次。博途PLC开放式以太网通信TSENG_C指令应用,请参看下面的文章链接:博途PLC 1200/1500PLC开放式以太网通信TSEND_…...

作用域插槽slot-scope

一般用于组件封装&#xff0c;将使用props传入组件的数据再次调出来或者单纯调用组件中的数据。也可用于为组件某个部分自定义样式以及为某次使用组件自定义样式。 直接拿elementui的el-table举例&#xff1a; <template><el-table v-loading"loading&q…...

Redis学习笔记13:基于spring data redis及lua脚本list列表实现环形结构案例

工作过程中需要用到环形结构&#xff0c;确保环上的各个节点数据唯一&#xff0c;如果有新的不同数据到来&#xff0c;则将最早入环的数据移除&#xff0c;每次访问环形结构都自动刷新有效期&#xff1b;可以基于lua 的列表list结构来实现这一功能&#xff0c;lua脚本可以节省网…...

c# 将excel导入 sqlite

nuget 须要加载 EPPlus.Core ExcelDataReader ExcelDataReader.DataSet //需要引用的扩展 using ExcelDataReader; using ExcelPackage OfficeOpenXml.ExcelPackage; public static void CreateZhouPianChaTable(){string tbname "zhou_pian_cha1";//判断表是否存…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...