当前位置: 首页 > news >正文

[LeetCode周赛复盘] 第 371 场周赛20231112

[LeetCode周赛复盘] 第 371 场周赛20231112

    • 一、本周周赛总结
    • 100120. 找出强数对的最大异或值 I
      • 1. 题目描述
      • 2. 思路分析
      • 3. 代码实现
    • 100128. 高访问员工
      • 1. 题目描述
      • 2. 思路分析
      • 3. 代码实现
    • 100117. 最大化数组末位元素的最少操作次数
      • 1. 题目描述
      • 2. 思路分析
      • 3. 代码实现
    • 100124. 找出强数对的最大异或值 II
      • 1. 题目描述
      • 2. 思路分析
      • 3. 代码实现
    • 参考链接

一、本周周赛总结

  • T1 模拟。
  • T2 模拟。
  • T3 模拟贪心。
  • T4 带删除的异或字典树+滑窗。

100120. 找出强数对的最大异或值 I

100120. 找出强数对的最大异或值 I

1. 题目描述

和T4相同,略。

2. 思路分析

看T4。

3. 代码实现

略。

100128. 高访问员工

100128. 高访问员工

1. 题目描述

在这里插入图片描述

2. 思路分析

  • 把时间转化成分钟数,看a[i]-a[i-2]<60即可。

3. 代码实现

class Solution:def findHighAccessEmployees(self, access_times: List[List[str]]) -> List[str]:g = defaultdict(list)for x,y in access_times:g[x].append(y)ans = []def f(x):return int(x[:2])*60 + int(x[2:])for p, a in g.items():a = sorted(f(x) for x in a)for i in range(2,len(a)):if a[i] - a[i-2] < 60:ans.append(p)breakreturn ans

100117. 最大化数组末位元素的最少操作次数

100117. 最大化数组末位元素的最少操作次数

1. 题目描述

在这里插入图片描述

2. 思路分析

  • 由于每次操作只能交换同位置的数,那我们尝试末尾是否交换,然后枚举每个位置是否交换即可。

3. 代码实现

class Solution:def minOperations(self, nums1: List[int], nums2: List[int]) -> int:n = len(nums1)def f(e1,e2):ans = 0if not (e1 == nums1[-1] and e2 == nums2[-1]):ans = 1 for x,y in zip(nums1[:-1], nums2[:-1]):if x <= e1 and y <= e2:continuex,y = y,x if x <= e1 and y <= e2:ans += 1else:return inf return ans ans = min(f(nums1[-1],nums2[-1]),f(nums2[-1],nums1[-1]))if ans == inf:return -1 return ans

100124. 找出强数对的最大异或值 II

100124. 找出强数对的最大异或值 II

1. 题目描述

在这里插入图片描述

2. 思路分析

T1的数据强化版。
  • 公式可以转化,令x>=y,则|x-y|<=min(x,y)等价于
    • x-y <= y ,即x<=2y
  • 我们把数组排序,然后滑窗处理,对于每个入窗的x,队头<x/2的数据都移除,那么窗口内的数据都是合法的y。
  • 如何对窗口内的数据全部异或x去最大值呢?这可以用TrieXOR来处理复杂度lg(U)。
  • 注意由于要出窗,字典树要支持删除。

3. 代码实现

class Solution:def maximumStrongPairXor(self, nums: List[int]) -> int:nums.sort()trie = {}def insert(v):cur = triefor i in range(20,-1,-1):p = v >> i & 1if p not in cur:cur[p] = {}cur = cur[p]cur[3] = cur.get(3,0) + 1def remove(v):cur = trie for i in range(20,-1,-1):p = v >> i & 1cur[p][3] -= 1if not cur[p][3]:del cur[p]breakcur = cur[p]def find(v):cur = trie ans = 0 for i in range(20,-1,-1):p = v>>i&1if p ^ 1 in cur:cur = cur[p^1]ans = ans << 1 | 1else:cur = cur[p]ans <<= 1return ansq = deque()ans = 0for v in nums:q.append(v)insert(v)while q[0]*2 < v:                remove(q.popleft())ans = max(ans, find(v))return ans 

参考链接

相关文章:

[LeetCode周赛复盘] 第 371 场周赛20231112

[LeetCode周赛复盘] 第 371 场周赛20231112 一、本周周赛总结100120. 找出强数对的最大异或值 I1. 题目描述2. 思路分析3. 代码实现 100128. 高访问员工1. 题目描述2. 思路分析3. 代码实现 100117. 最大化数组末位元素的最少操作次数1. 题目描述2. 思路分析3. 代码实现 100124…...

Google Guava Cache LoadingCache 基本使用

一. 添加依赖 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>27.1-jre</version> </dependency>二. 创建CacheLoader LoadingCache<Long, String> cache CacheBuilder.newB…...

AWS云服务器EC2实例进行操作系统迁移

AWS云服务器EC2实例进行操作系统迁移 文章目录 AWS云服务器EC2实例进行操作系统迁移1. 亚马逊EC2云服务器简介1.2 亚马逊EC2云务器与弹性云服务器区别 2. 亚马逊EC2云服务器配置流程2.1 亚马逊EC2云服务器实例配置2.1.1 EC2实例购买教程2.1.1 EC2实例初始化配置2.1.2 远程登录E…...

《015.SpringBoot+vue之音乐网》【前后端分离】

《015.SpringBootvue之音乐网》【前后端分离】 项目简介 [1]本系统涉及到的技术主要如下&#xff1a; 推荐环境配置&#xff1a;DEA jdk1.8 Maven MySQL 前后端分离; 后台&#xff1a;SpringBootMybatisMySQL; 前台&#xff1a;Vue3.0 TypeScript Vue-Router Vuex Axios …...

网格算法和穷举法

介绍 网格算法和穷举法都是暴力搜索最优点的算法&#xff0c;在很多竞赛题中有应用&#xff0c;当重点讨论模型本身而轻视算法的时候&#xff0c;可以使用这种暴力方案&#xff0c;最好使用一些高级语言作为编程工具 当需要在多个离散的点&#xff08;比如网格点&#xff09;…...

【AI】自回归 (AR) 模型使预测和深度学习变得简单

自回归 (AR) 模型是统计和时间序列模型&#xff0c;用于根据数据点的先前值进行分析和预测。这些模型广泛应用于各个领域&#xff0c;包括经济、金融、信号处理和自然语言处理。 自回归模型假设给定时间变量的值与其过去的值线性相关&#xff0c;这使得它们可用于建模和预测时…...

安卓常见设计模式14------单例模式(Kotlin版)

1. W1 是什么&#xff0c;什么是单例模式&#xff1f;​ 单例模式属于创建型模式&#xff0c;旨在确保一个类只有一个实例&#xff0c;并提供一个全局访问点来获取该实例。单例模式的核心思想是限制类的实例化&#xff0c;使得系统中只有一个共享的实例。 2. W2 为什么&#…...

卡尔曼家族从零解剖-(06)一维卡尔曼滤波编程实践

讲解关于slam一系列文章汇总链接:史上最全slam从零开始&#xff0c;针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解&#xff1a;https://blog.csdn.net/weixin_43013761/article/details/133846882 文末正下方中心提供了本人 联系…...

macOS使用conda初体会

最近在扫盲测序的一些知识 其中需要安装一些软件进行练习&#xff0c;如质控的fastqc&#xff0c;然后需要用conda来配置环境变量和安装软件。记录一下方便后续查阅学习 1.安装miniconda 由于我的电脑之前已经安装了brew&#xff0c;所以我就直接用brew安装了 brew install …...

GetPrivateProfileSection使用

基本语法 GetPrivateProfileSection 是一个 Windows API 函数&#xff0c;用于检索指定 INI 文件中特定节的所有键值对。它可以读取INI文件中指定节所有的键值对并将结果存储在指定的缓冲区中。 以下是 GetPrivateProfileSection 函数的基本语法&#xff1a; DWORD GetPriva…...

Ubuntu20.04 安装 Matlab R2021a

1. 压缩包分卷解压缩 将下载下来的压缩包分卷解压缩 Ubuntu自带的archive会解压出错&#xff0c;不适用于分卷解压。 需要下载7zip &#xff08;sudo apt-get install 走起&#xff09; zip -F xxx.zip --out XXX.zip # xxx为主文件名 # XXX.zip为输出路径&#xff0c;上面的…...

让35岁程序员精力充沛的方法

最近重新阅读了《掌控&#xff1a;开启不疲惫、不焦虑的人生》这本书。这本书曾经对我减重20斤产生了巨大的影响。自然入睡、自然醒来&#xff0c;能够高效地工作和享受生活&#xff0c;这才是我们渴望的掌控感。以下是一些笔记&#xff1a; 少吃比多运动更有效地控制体重 每…...

01:2440----点灯大师

目录 一:点亮一个LED 1:原理图 2:寄存器 3:2440的框架和启动过程 A:框架 B:启动过程 4:代码 5:ARM知识补充 6:c语言和汇编的应用 A:代码 B:分析汇编语言 C:内存空间 7:内部机制 二:点亮2个灯 三:流水灯 四:按键控制LED 1:原理图 2:寄存器配置 3:代码 一:点…...

初步了解 RabbitMQ

目录 ​编辑一、MQ 概述 1、MQ 的简介 2、MQ 的用途 &#xff08;1&#xff09;限流削峰 &#xff08;2&#xff09;异步解耦 (3)数据收集 二、RabbitMQ 概述 1、RabbitMQ 简介 2、四大核心概念 3、RabbitMQ 的核心部分 ​编辑 4、名词解释&#xff1a; 三、Hello …...

Faster-RCNN and Mask-RCNN框架解析

由于本人记忆力实在太差&#xff0c;每次学完一个框架没过多久就会忘&#xff0c;而且码文能力不行&#xff0c;人又懒&#xff0c;所以看到了其他人写的不错的两篇框架解析的博文&#xff0c;先来记录一下&#xff0c;就当是我写的喽 Faster-rcnn详解_faster r-cnn-CSDN博客 M…...

大数据可视化数据大屏可视化模板【可视化项目案例-05】

🎉🎊🎉 你的技术旅程将在这里启航! 🚀🚀 本文选自专栏:可视化技术专栏100例 可视化技术专栏100例,包括但不限于大屏可视化、图表可视化等等。订阅专栏用户在文章底部可下载对应案例源码以供大家深入的学习研究。 🎓 每一个案例都会提供完整代码和详细的讲解,不…...

Vue Router active-class 属性

active-class 是 vue-router 模块的 router-link 组件的属性&#xff0c;当 router-link 标签被点击时将会应用这个样式。 单独在 router-link 标签上使用 active-class 属性 <router-link to"/about" active-class"active">about</router-link…...

Error creating bean with name ‘apiModelSpecificationReader‘ defined in URL

问题&#xff1a; 启动项目的时候&#xff0c;报错了 org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name apiModelSpecificationReader defined in URL [jar:file:/D:/.gradle/caches/modules-2/files-2.1/io.springfox/sp…...

CS224W6.2——深度学习基础

在本文中&#xff0c;我们回顾了深度学习的概念和技术&#xff0c;这些概念和技术对理解图神经网络至关重要。从将机器学习表述为优化问题开始&#xff0c;介绍了目标函数、梯度下降、非线性和反向传播的概念。 文章目录 1. 大纲2. 优化问题2.1 举例损失函数 3. 如何优化目标函…...

Linux c/c++服务器开发实践

在Linux C开发环境中&#xff0c;通常有两种方式来开发多线程程序&#xff0c;一种是利用POSIX多线程 API函数来开发多线程程序&#xff0c;另外一种是利用C自带线程类来开发程序。 常见的与线程相关的基本API函数&#xff1a; API函数含义pthread_create创建线程pthread_exi…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...